Some remarks about the topology of corank 2 map germs from R^2 to R^2
J.A. Moya-Pérez and J.J. Nuño-Ballesteros
Journal of Singularities
volume 10 (2014), 200-224
Received 4 January 2013. Received in revised form 16 December 2013.
Add a reference to this article to your citeulike library.
Abstract:
Let f: (R^2, 0) -> (R^2, 0) be a finitely determined map germ. The link of f is obtained by taking a small enough representative f: U \subset R^2 - > R^2 and the intersection of its image with a small enough sphere centered at the origin in R^2. We will use Gauss words to classify topologically corank 2 map germs. In particular, we will center our attention in map germs that belong to the Thom-Boardman class \Sigma^{2, 0}.
Keywords:
Gauss word, link, finite determinacy
Mathematical Subject Classification:
Primary 58K15; Secondary 58K40, 58K60
Author(s) information:
J.A. Moya-Pérez | J.J. Nuño-Ballesteros |
Departament de Geometria i Topologia | Departament de Geometria i Topologia |
Universitat de València | Universitat de València |
Campus de Burjassot | Campus de Burjassot |
46100 Burjassot SPAIN | 46100 Burjassot SPAIN |
email: Juan.Moya@uv.es | email: Juan.Nuno@uv.es |