ON REGULARITY CONDITIONS AT INFINITY

L.R.G. DIAS

Abstract

Let $f: X \rightarrow \mathbb{K}^{p}$ be a restriction of a polynomial mapping on X, where $X \subset \mathbb{K}^{n}$ is a smooth affine variety. We prove the equivalence of regularity conditions at infinity, which are useful to control the bifurcation set of f.

1. Introduction

Let $f: X \rightarrow \mathbb{K}^{p}$ be a differentiable mapping, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, X is a smooth affine variety and $\operatorname{dim} X \geq p$. The bifurcation set of f, denoted by $B(f)$, is the smallest subset of \mathbb{K}^{p} such that f is a locally trivial topological fibration on $\mathbb{K}^{p} \backslash B(f)$.

The elements of $B(f)$ may come from critical values but also from regular values of f, i.e., $B(f) \backslash(B(f) \cap f(\operatorname{Sing} f))$ can be not empty. In the example $f: \mathbb{K}^{2} \rightarrow \mathbb{K}, f(x, y)=x+x^{2} y$, the value $0 \in \mathbb{K}$ is not critical but there is no trivial fibration on any neighborhood of 0 .

The study of bifurcation set $B(f)$ has connections with many other topics such as problems of optimization of polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (see e.g. [HP]), generalizations of Ehresmann's Theorem (see e.g. [Ga, Je3, Ra]), Jacobian Conjecture (see e.g. [LW, ST]), global Łojasiewicz exponents (see e.g. $[\mathrm{PZ}, \mathrm{DG}]$), equisingularity and Milnor numbers (see e.g. [Ga, Pa1, ST, Ti2, $\mathrm{Ti} 3]$), stratification theory (see e.g. [KOS, Ti1]), etc...

A complete characterization of $B(f) \backslash(B(f) \cap f(\operatorname{Sing} f))$ is yet an open problem. In fact, a characterization of $B(f) \backslash(B(f) \cap f(\operatorname{Sing} f))$ is available only for polynomial functions $f: \mathbb{K}^{2} \rightarrow \mathbb{K}$, see $[\mathrm{Su}, \mathrm{HL}]$ for $\mathbb{K}=\mathbb{C}$ and $[\mathrm{TZ}]$ for $\mathbb{K}=\mathbb{R}$.

Through the use of regularity conditions at infinity, one has obtained some ways to approximate $B(f)$. For polynomial functions $f: \mathbb{K}^{n} \rightarrow \mathbb{K}$, see for instance $[\mathrm{Br}, \mathrm{CT}, \mathrm{NZ}, \mathrm{Pa} 1, \mathrm{~Pa} 2, \mathrm{PZ}$, ST, Ti2, Ti3, Ti4].

For mappings, i.e., $p \geq 1$, Rabier [Ra] considered a regularity condition, which we call here Rabier condition. From this condition, Rabier defined the set of asymptotic critical values $K_{\infty}(f)$ and proved that $B(f) \subset\left(f(\operatorname{Sing} f) \cup K_{\infty}(f)\right)$. In fact, Rabier's results apply to C^{2} maps $f: M \rightarrow N$, where M, N are Finsler manifolds.

For polynomial mappings $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$, Gaffney [Ga] defined the generalized Malgrange condition, which we call here Gaffney condition. This condition yields the set $A_{G_{\infty}}(f)$ of non-regular values at infinity and, under additional hypothesis on f, Gaffney obtained

$$
B(f) \subset\left(f(\operatorname{Sing} f) \cup A_{G_{\infty}}(f)\right)
$$

Kurdyka, Orro and Simon [KOS] also considered Rabier condition. They obtained an equivalence between Rabier condition and another condition which depends on Kuo function ([Kuo]) (we call this last of Kuo-KOS condition). They showed that, for C^{2} semi-algebraic mappings $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ (respectively, polynomial mappings $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$), the set $K_{\infty}(f)$ is a closed semialgebraic set (respectively, a closed algebraic set) of dimension at most $p-1$.

[^0]Jelonek [Je3] used another condition, which turns out to be equivalent to Rabier condition and to Gaffney condition. We call that condition Jelonek condition. Then, Jelonek [Je3] gave a more direct proof of the inclusion $B(f) \subset\left(f(\operatorname{Sing} f) \cup K_{\infty}(f)\right)$.

The above four conditions are asymptotic conditions, which depend on the behaviours of the fibres of f and Jacobian matrix of f.

Another regularity condition at infinity is the t-regularity, a geometric grounded condition at infinity. The t-regularity has been introduced in $[\mathrm{ST}]$ for polynomial functions $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and in [Ti3] for polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

In [DRT], we considered the t-regularity for C^{1} semi-algebraic mappings $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and we proved that t-regularity is equivalent to the conditions of [Ra, KOS] (consequently, equivalent to the conditions of [Ga, Je3]).

In this paper, we extend the use of t-regularity to algebraic mappings $f: X \rightarrow \mathbb{K}^{p}$ and we replace \mathbb{K}^{n} in the above results by a smooth affine variety X.

In section 4 , we prove that t-regularity is equivalent to Rabier condition for $f: X \rightarrow \mathbb{K}^{p}$ (Theorem 4.1). This extends for mappings defined on X the equivalence proved in [DRT, Theorem 3.2] and the equivalence proved for $p=1$ in $[\mathrm{Pa} 2, \mathrm{ST}]$.

It follows from Jelonek [Je4] that Rabier, Gaffney, Kuo-KOS and Jelonek conditions are also equivalent for mappings defined on X. Therefore, our Theorem 4.1 completes for these mappings the equivalences above mentioned in the case of mappings $f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{p}$.

Another important set in the study of polynomial mappings is the set J_{f} of points at which f is not proper (see e.g. [Je1, Je2]). It was proved in [KOS, Proposition 3.1] that in the case of semi-algebraic maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the set J_{f} coincides with $K_{\infty}(f)$. This equality is crucial in the proof of the injectivity criterion of [CDTT, CDT].

In section 5 , we consider $f: X \rightarrow \mathbb{R}^{p}$, where $\operatorname{dim} X=p$. We prove (Proposition 5.3) that $K_{\infty}(f)=J_{f}$, which extends for mappings defined on X the equality proved in [KOS, Proposition 3.1].

2. Basic Definitions

The goal of this section is to present Lemma 2.1, which will be useful to compute the Rabier function. We also introduce here some notations.

Let V, W be normed finite dimensional vector spaces over \mathbb{K}, where $\mathbb{K}=\mathbb{R}, \mathbb{C}$. We denote by $\mathcal{L}(V, W)$ the set of linear mappings from V to W. For simplicity, we denote $\mathcal{L}(V, \mathbb{K})$ by V^{*}. Given $A \in \mathcal{L}(V, W)$, we denote by $A^{*} \in \mathcal{L}\left(W^{*}, V^{*}\right)$ the adjoint operator induced by A. For any linear subspace V of \mathbb{K}^{n}, we set

$$
V^{\perp}:=\left\{w \in \mathbb{K}^{n} \mid\langle w, v\rangle=0, \forall v \in V\right\}
$$

We consider the following norm on $\mathcal{L}(V, W)$:

$$
\begin{equation*}
\|A\|:=\max \{\|A(x)\| ; x \in V \text { and }\|x\|=1\}, \text { where } A \in \mathcal{L}(V, W) \tag{1}
\end{equation*}
$$

We denote by e_{i} the vector of \mathbb{K}^{n} with 1 in the i-th coordinate and zeros elsewhere. Let $A \in \mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}\right)$, we denote by $\left\|\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)\right\|$ the Euclidean norm of the vector

$$
\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right) \in \mathbb{K}^{n}
$$

Another norm on $\mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}\right)$ can be defined as follows:

$$
\begin{equation*}
\|A\|_{1}:=\left\|\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)\right\| \tag{2}
\end{equation*}
$$

It is well known that norms (1) and (2) of $\mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}\right)$ are equivalents (see e.g. [Yo, Theorem $6.8])$. The next lemma will be useful in the sequel:

Lemma 2.1. Let $V \subset \mathbb{K}^{n}$ be a linear subspace of \mathbb{K}^{n}. Given $A \in \mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}\right)$, we denote by $A_{\mid V}$ the restriction of A to V and we set:

$$
\begin{equation*}
\left\|A_{\mid V}\right\|_{3}:=\min \left\{\left\|\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)+w\right\| ; w \in V^{\perp}\right\} . \tag{3}
\end{equation*}
$$

Then, the norms (1) and (3) of $A_{\mid V}$ are equivalent (indeed, one has $\left\|A_{\mid V}\right\|_{3}=\left\|A_{\mid V}\right\|$).
Proof. Let $A \in \mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}\right)$. For any vector $w \in V^{\perp}$ and $v=\left(v_{1}, \ldots, v_{n}\right) \in V$, we may write $A(v)=\sum_{i=1}^{n} v_{i} A\left(e_{i}\right)=\left\langle v,\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)\right\rangle=\left\langle v,\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)+w\right\rangle$, where the last equality follows from the fact that $w \in V^{\perp}$. These equalities and Cauchy-Schwarz inequality imply:

$$
\begin{equation*}
\|A(v)\|=\left\|\left\langle v,\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)+w\right\rangle\right\| \leq\|v\|\left\|\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)+w\right\| \tag{4}
\end{equation*}
$$

If $\|v\|=1$, the inequality (4) gives $\|A(v)\| \leq\left\|\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)+w\right\|$. Since v, w are arbitrary elements, this last inequality implies:

$$
\begin{equation*}
\left\|A_{\mid V}\right\| \leq\left\|A_{\mid V}\right\|_{3} \tag{5}
\end{equation*}
$$

To show $\left\|A_{\mid V}\right\|_{3} \leq\left\|A_{\mid V}\right\|$, we write $\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)=\mathrm{v}_{1}+\mathrm{w}_{1}$, with $\mathrm{v}_{1} \in V$ and $\mathrm{w}_{1} \in V^{\perp}$ (this is possible since $\mathbb{K}^{n}=V \oplus V^{\perp}$). Then, for any $v \in V$, one obtains

$$
A(v)=\left\langle v,\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)\right\rangle=\left\langle v, \mathrm{v}_{1}+\mathrm{w}_{1}\right\rangle=\left\langle v, \mathrm{v}_{1}\right\rangle
$$

where the last equality follows from the fact that $\mathrm{w}_{1} \in V^{\perp}$.
If $\mathrm{v}_{1}=0$ then $A_{\mid V} \equiv 0$ and $\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)=\mathrm{w}_{1}$, which implies $\left\|A_{\mid V}\right\|=0$ and $\left\|A_{\mid V}\right\|_{1}=0$. Therefore, the inequality $\left\|A_{\mid V}\right\|_{3} \leq\left\|A_{\mid V}\right\|$ holds if $\mathrm{v}_{1}=0$.

If $\mathrm{v}_{1} \neq 0$, we set $z:=\frac{\mathrm{v}_{1}}{\left\|\mathrm{v}_{1}\right\|}$. Thus, $z \in V,\|z\|=1$ and $A(z)=\left\langle z, \mathrm{v}_{1}\right\rangle=\left\|\mathrm{v}_{1}\right\|$, where the last equality follows from definition of z. Since $\|z\|=1$, one has $\|A(z)\|=\left\|\mathrm{v}_{1}\right\| \leq\left\|A_{\mid V}\right\|$.

To finish, we observe that $\left(A\left(e_{1}\right), \ldots, A\left(e_{n}\right)\right)-\mathrm{w}_{1}=\mathrm{v}_{1}$, with $\mathrm{w}_{1} \in V^{\perp}$. By definition of $\left\|A_{\mid V}\right\|_{3}$, this last equality implies $\left\|A_{\mid V}\right\|_{3} \leq\left\|\mathrm{v}_{1}\right\|$. Thus, we conclude $\left\|A_{\mid V}\right\|_{3} \leq\left\|\mathrm{v}_{1}\right\| \leq\left\|A_{\mid V}\right\|$, which follows $\left\|A_{\mid V}\right\|_{3} \leq\left\|A_{\mid V}\right\|$. Therefore, from this last inequality and inequality (5), we obtain $\left\|A_{\mid V}\right\|=\left\|A_{\mid V}\right\|_{3}$, which finishes the proof.

3. Regularity conditions for mappings

We introduce the main definitions leading to the notion of t-regularity and we define Rabier condition in §3.3.
3.1. t-regularity. Let $\mathcal{X} \subset \mathbb{K}^{m}$ be a \mathbb{K}-analytic variety, $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. We denote the set of regular points of \mathcal{X} by $\mathcal{X}_{\text {reg }}$ and the set of singular points of \mathcal{X} by $\mathcal{X}_{\text {sing }}$. We assume that \mathcal{X} contains at least a regular point.

Definition 3.1. Let $g: \mathcal{X} \rightarrow \mathbb{K}$ be an analytic function defined in some neighbourhood of \mathcal{X} in \mathbb{K}^{m}. Let \mathcal{X}_{0} denote the subset of $\mathcal{X}_{\text {reg }}$ where g is a submersion. The relative conormal space of g is defined as follows:

$$
C_{g}(\mathcal{X}):=\operatorname{closure}\left\{(x, H) \in \mathcal{X}_{0} \times \check{\mathbb{P}}^{m-1} \mid T_{x}\left(g^{-1}(g(x))\right) \subset H\right\} \subset \overline{\mathcal{X}} \times \check{\mathbb{P}}^{m-1}
$$

We denote by $\pi: C_{g}(\mathcal{X}) \rightarrow \overline{\mathcal{X}}$ the projection $\pi(x, H)=x$.
For any $y \in \overline{\mathcal{X}}$ such that $g(y)=0$, we define $C_{g, y}(\mathcal{X}):=\pi^{-1}(y)$. The following result shows that $C_{g, y}(\mathcal{X})$ depends on the germ of g at y only up to multiplication by some invertible analytic function germ γ.

Lemma 3.2 ([Ti4, Lemma 1.2.7]). Let $\gamma:\left(\mathbb{K}^{m}, y\right) \rightarrow \mathbb{K}$ be an analytic function such that $\gamma(y) \neq 0$. Then $C_{\gamma g, y}(\mathcal{X})=C_{g, y}(\mathcal{X})$.

We use coordinates $\left(x_{1}, \ldots, x_{n}\right)$ for \mathbb{K}^{n} and coordinates $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$ for the projective space \mathbb{P}^{n}. We denote by $\mathbb{H}^{\infty}=\left\{\left[x_{0}: x_{1}: \ldots: x_{n}\right] \in \mathbb{P}^{n} \mid x_{0}=0\right\}$ the hyperplane at infinity.

Let $f: X \rightarrow \mathbb{K}^{p}$ be the restriction of a polynomial mapping to a smooth affine variety $X \subset \mathbb{K}^{n}$, where $\operatorname{dim} X \geq p$. We set $\mathbb{X}:=\overline{\operatorname{graph} f}$ as the closure of the graph of f in $\mathbb{P}^{n} \times \mathbb{K}^{p}$ and we set $\mathbb{X}^{\infty}:=\mathbb{X} \cap\left(\mathbb{H}^{\infty} \times \mathbb{K}^{p}\right)$.

We consider the affine charts $U_{j} \times \mathbb{K}^{p}$ of $\mathbb{P}^{n} \times \mathbb{K}^{p}$, where $U_{j}=\left\{x_{j} \neq 0\right\}$ and $j=0,1, \ldots, n$. We identify the chart U_{0} with the affine space \mathbb{K}^{n}. Thus, we have $\mathbb{X} \cap\left(U_{0} \times \mathbb{K}^{p}\right)=\mathbb{X} \backslash \mathbb{X}^{\infty}=\operatorname{graph} f$ and \mathbb{X}^{∞} is covered by the charts $U_{1} \times \mathbb{K}^{p}, \ldots, U_{n} \times \mathbb{K}^{p}$.

If g denotes the projection to the variable x_{0} in some affine chart $U_{j} \times \mathbb{K}^{p}$, then the relative conormal $C_{g}\left(\mathbb{X} \backslash \mathbb{X}^{\infty} \cap U_{j} \times \mathbb{K}^{p}\right) \subset \mathbb{X} \times \check{\mathbb{P}}^{n+p-1}$ and the projection $\pi: C_{g}\left(\mathbb{X} \backslash \mathbb{X}^{\infty} \cap U_{j} \times \mathbb{K}^{p}\right) \rightarrow \mathbb{X}$, $\pi(y, H)=y$, are well-defined.

Let us then consider the space $\pi^{-1}\left(\mathbb{X}^{\infty}\right)$, which is well-defined for every chart $U_{j} \times \mathbb{K}^{p}$ as a subset of $C_{g}\left(\mathbb{X} \backslash \mathbb{X}^{\infty} \cap U_{j} \times \mathbb{K}^{p}\right)$. By Lemma 3.2, the definitions coincide at the intersections of the charts and one has:

Definition 3.3. The space of characteristic covectors at infinity is the well-defined set

$$
\mathcal{C}^{\infty}:=\pi^{-1}\left(\mathbb{X}^{\infty}\right)
$$

For any $z_{0} \in \mathbb{X}^{\infty}$, we denote $\mathcal{C}_{z_{0}}^{\infty}:=\pi^{-1}\left(z_{0}\right)$.
We denote by $\tau: \mathbb{P}^{n} \times \mathbb{K}^{p} \rightarrow \mathbb{K}^{p}$ the second projection. The relative conormal space $C_{\tau}\left(\mathbb{P}^{n} \times \mathbb{K}^{p}\right)$ is defined as in Definition 3.1, where the function g is replaced by the application τ.

Definition 3.4 (t-regularity). We say that f is t-regular at $z_{0} \in \mathbb{X}^{\infty}$ if $C_{\tau}\left(\mathbb{P}^{n} \times \mathbb{K}^{p}\right) \cap \mathcal{C}_{z_{0}}^{\infty}=\emptyset$.
3.2. t-regularity interpretation. Let $X \subset \mathbb{K}^{n}$ be a smooth affine variety over \mathbb{K}. We suppose that X is a global complete intersection. In other words,

$$
X=\left\{x \in \mathbb{K}^{n} \mid h_{1}(x)=h_{2}(x)=\ldots=h_{r}(x)=0\right\}
$$

and $\operatorname{rank} \mathrm{D} h(x)=r$, where $h=\left(h_{1}, \ldots, h_{r}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{r}$ and $\mathrm{D} h(x)$ denotes the Jacobian matrix of h at x.

Let $f=\left(f_{1}, \ldots, f_{p}\right): X \rightarrow \mathbb{K}^{p}$ be the restriction of a polynomial mapping to X, where $\operatorname{dim} X \geq p$. Given $z_{0} \in \mathbb{X}^{\infty}$, up to some linear change of coordinate, we may assume that $z_{0} \in \mathbb{X}^{\infty} \cap\left(U_{n} \times \mathbb{K}^{p}\right)$. In the intersection of charts $\left(U_{0} \cap U_{n}\right) \times \mathbb{K}^{p}$, we consider the change of coordinates $x_{1}=y_{1} / y_{0}, \ldots, x_{n-1}=y_{n-1} / y_{0}, x_{n}=1 / y_{0}$, where $\left(x_{1}, \ldots, x_{n}\right)$ are the coordinates in U_{0} and $\left(y_{0}, \ldots, y_{n-1}\right)$ are those in U_{n}. Then for $i=1, \ldots, p$ and $j=1, \ldots, r$, we define:

$$
\begin{align*}
& F_{i}(y, t)=F_{i}\left(y_{0}, y_{1}, \ldots, y_{n-1}, t_{1}, \ldots, t_{p}\right):=f_{i}\left(y_{1} / y_{0}, \ldots, y_{n-1} / y_{0}, 1 / y_{0}\right)-t_{i} \tag{6}\\
& H_{j}(y, t)=H_{j}\left(y_{0}, y_{1}, \ldots, y_{n-1}, t_{1}, \ldots, t_{p}\right):=h_{j}\left(y_{1} / y_{0}, \ldots, y_{n-1} / y_{0}, 1 / y_{0}\right) . \tag{7}
\end{align*}
$$

Define $H(y, t):=\left(H_{1}(y, t), \ldots, H_{r}(y, t)\right)$ and $F(y, t):=\left(F_{1}(y, t), \ldots, F_{p}(y, t)\right)$. Then

$$
\left(X \times \mathbb{K}^{p}\right) \cap\left(\left(U_{0} \cap U_{n}\right) \times \mathbb{K}^{p}\right)=H^{-1}(0)
$$

and $\mathbb{X} \cap\left(\left(U_{0} \cap U_{n}\right) \times \mathbb{K}^{p}\right)=F^{-1}(0) \cap H^{-1}(0)$.
We denote the normal vector to the hypersurface $\left\{y_{0}=\right.$ constant $\}$ by

$$
\overrightarrow{n_{0}}=(1,0, \ldots, 0) \in \mathbb{K}^{n} \times \mathbb{K}^{p}
$$

Let us define $p+r$ normal vectors to $F^{-1}(0)$ at $(y, t) \in \mathbb{X} \cap\left(\left(U_{0} \cap U_{n}\right) \times \mathbb{K}^{p}\right)$, as follows: For $i=1, \ldots, p$, define:

$$
\begin{equation*}
\overrightarrow{n_{i}}(y, t)=\nabla F_{i}(y, t)=\left(\nabla_{n} F_{i}(y, t), \nabla_{p} F_{i}(y, t)\right) \tag{8}
\end{equation*}
$$

where

$$
\nabla_{n} F_{i}(y, t):=\left(\frac{\partial F_{i}}{\partial y_{0}}(y, t), \cdots, \frac{\partial F_{i}}{\partial y_{n-1}}(y, t)\right), \quad \nabla_{p} F_{i}(y, t):=\left(\frac{\partial F_{i}}{\partial t_{1}}(y, t), \cdots, \frac{\partial F_{i}}{\partial t_{p}}(y, t)\right)
$$

For $j=1, \ldots, r$, define:

$$
\begin{equation*}
\vec{m}_{j}(y, t)=\nabla H_{j}(y, t)=\left(\frac{\partial H_{j}}{\partial y_{0}}(y, t), \ldots, \frac{\partial H_{j}}{\partial y_{n-1}}(y, t), 0, \ldots, 0\right) \tag{9}
\end{equation*}
$$

By Definition 3.4, f is not t-regular at $z_{0} \in \mathbb{X}^{\infty}$ if and only if there exists a sequence $\left\{\left(y_{k}, t_{k}\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{X} \cap\left(\left(U_{0} \cap U_{n}\right) \times \mathbb{K}^{p}\right)$ such that $\left(y_{k}, t_{k}\right) \rightarrow z_{0}$ and the tangent hyperplanes to the fibres of $g_{\mid \mathbb{X}}$ at $\left(y_{k}, t_{k}\right)$ tend to a hyperplane W such that its normal line has a direction of the form $\left[0: \cdots: 0: b_{1}: \cdots: b_{p}\right]$ in \mathbb{P}^{n+p-1}. More explicitly, there exists a sequence $\left\{\left(\psi_{0 k}, \psi_{1 k}, \ldots, \psi_{p_{k}}, \varphi_{1 k}, \ldots, \varphi_{r_{k}}\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{K}^{p+r+1}$ such that

$$
\lim _{k \rightarrow \infty}\left(\sum_{i=0}^{p} \psi_{i k} \overrightarrow{n_{i}}\left(y_{k}, t_{k}\right)+\sum_{j=1}^{r} \varphi_{j k} \vec{m}_{j}\left(y_{k}, t_{k}\right)\right)
$$

of the linear combination of normal vectors $\overrightarrow{n_{i}}, \overrightarrow{m_{j}}$ has the direction

$$
\vec{n}_{W}=\left[0: 0: \cdots: 0: b_{1}: \cdots: b_{p}\right] \in \mathbb{P}^{n+p-1}
$$

3.3. Rabier function and Rabier condition.

Definition 3.5 ([Ra, p. 651]). Given $A \in \mathcal{L}(V, W)$. The Rabier function at A is defined as follows:

$$
\begin{equation*}
\nu(A):=\inf \left\{\left\|A^{*}(\varphi)\right\| ; \varphi \in W^{*} \text { and }\|\varphi\|=1\right\} \tag{10}
\end{equation*}
$$

For any vector $w=\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{K}^{m}$, we denote the line matrix associated to w by $[w]$, i.e., $[w]=\left[\begin{array}{lll}w_{1} & \ldots & w_{m}\end{array}\right]$. Given $A \in \mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}^{p}\right)$, we denote by $[A]$ the matrix of A with respect to the canonical basis of \mathbb{K}^{n} and \mathbb{K}^{p}. Thus, one has:
Lemma 3.6. Let V be a linear subspace of \mathbb{K}^{n}. For any $A \in \mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}^{p}\right)$, if we set

$$
\begin{equation*}
\nu_{1}\left(A_{\mid V}\right):=\inf \left\{\|[u][A]+[w]\| ; w \in V^{\perp}, u \in \mathbb{K}^{p} \text { and }\|u\|=1\right\} \tag{11}
\end{equation*}
$$

then there are positive constants C_{1} and C_{2} such that $C_{1} \nu_{1}\left(A_{\mid V}\right) \leq \nu\left(A_{\mid V}\right) \leq C_{2} \nu_{1}\left(A_{\mid V}\right)$.
Proof. The proof follows from Lemma 2.1 and Definition 3.5.
Now, let $X \subset \mathbb{K}^{n}$ be a smooth affine variety over \mathbb{K} and let $f: X \rightarrow \mathbb{K}^{p}$ be the restriction of a polynomial mapping to X, where $\operatorname{dim} X \geq p$. We have:

Definition 3.7 ([Ra]). The set of asymptotic critical values of f is defined as follows:

$$
\begin{align*}
K_{\infty}(f):= & \left\{t \in \mathbb{K}^{p} \mid \exists\left\{x_{j}\right\}_{j \in \mathbb{N}} \subset X, \lim _{j \rightarrow \infty}\left\|x_{j}\right\|=\infty\right. \tag{12}\\
& \left.\lim _{j \rightarrow \infty} f\left(x_{j}\right)=t \text { and } \lim _{j \rightarrow \infty}\left\|x_{j}\right\| \nu\left(\mathrm{D} f\left(x_{j}\right)_{\mid T_{x_{j}} X}\right)=0\right\}
\end{align*}
$$

where $\nu(-)$ is defined as in Definition 3.5.
We reformulate the above condition in a localized version, at some point at infinity $z_{0} \in \mathbb{X}^{\infty}$, as follows:

Definition 3.8 (Rabier condition). We say that $z_{0} \in \mathbb{X}^{\infty}$ is an asymptotic critical point of f if and only if there exists $\left\{x_{j}\right\}_{j \in \mathbb{N}} \subset X \simeq \operatorname{graph} f$ such that $\lim _{j \rightarrow \infty}\left(x_{j}, f\left(x_{j}\right)\right)=z_{0}$ and $\tau\left(z_{0}\right) \in K_{\infty}(f)$, where $\tau: \mathbb{P}^{n} \times \mathbb{K}^{p} \rightarrow \mathbb{K}^{p}$ denotes the second projection.

We say that $z_{0} \in \mathbb{X}^{\infty}$ satisfies Rabier condition if z_{0} is not an asymptotic critical point of f.

Remark 3.9. From Lemma 3.6, we obtain the same set of Definition 3.7 if we replace ν by the function ν_{1} defined in (11).

4. Equivalence of Regularity conditions

The goal of this section is to prove an equivalence between t-regularity and Rabier condition.
Let $X \subset \mathbb{K}^{n}$ be a smooth affine variety over \mathbb{K}. We suppose that X is a global complete intersection. In other words, $X=\left\{x \in \mathbb{K}^{n} \mid h_{1}(x)=h_{2}(x)=\ldots=h_{r}(x)=0\right\}$ and rank $\mathrm{D} h(x)=r$, for any $x \in X$, where $h=\left(h_{1}, \ldots, h_{r}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{r}$ and $\mathrm{D} h(x)$ denotes the Jacobian matrix of h at x (see Remark 4.2). With above definitions and statements, we have:

Theorem 4.1. Let $f: X \rightarrow \mathbb{K}^{p}$ be a non-constant polynomial mapping, with $\operatorname{dim} X \geq p$. Let $z_{0} \in \mathbb{X}^{\infty}$. Then f is t-regular at z_{0} if and only if z_{0} is not an asymptotic critical point of f.

Proof. We may assume (eventually after some linear change of coordinates) that

$$
z_{0} \in \mathbb{X}^{\infty} \cap\left(U_{n} \times \mathbb{R}^{p}\right)
$$

and that $\left|x_{n}\right| \geq\left|x_{i}\right|, i=1, \ldots, n-1$, for x in some neighbourhood of z_{0}.
$" \Rightarrow$ ". Let z_{0} be an asymptotic critical point of f. By Definition 3.8 and Remark 3.9, this means that there exist sequences $\left\{\left(\psi_{k}, \varphi_{k}\right)=\left(\left(\psi_{1 k}, \ldots, \psi_{p k}\right),\left(\varphi_{1 k}, \ldots, \varphi_{r_{k}}\right)\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{K}^{p+r}$ and $\left\{x_{k}:=\left(x_{1 k}, \ldots, x_{n k}\right)\right\}_{k \in \mathbb{N}} \subset X$, where $\left\|\psi_{k}\right\|=1$ and $\lim _{k \rightarrow \infty}\left(\psi_{k}, \varphi_{k}\right)=(\psi, \varphi)$, such that $\lim _{k \rightarrow \infty} \psi_{k}=\psi=\left(\psi_{1}, \ldots, \psi_{p}\right) \neq(0, \ldots, 0), \lim _{k \rightarrow \infty}\left(x_{k}, f\left(x_{k}\right)\right)=z_{0}$ and:

$$
\begin{equation*}
\left\|x_{k}\right\|\left\|\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial f_{i}}{\partial x_{1}}\left(x_{k}\right)+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial h_{j}}{\partial x_{1}}\left(x_{k}\right), \ldots, \sum_{i=1}^{p} \psi_{i k} \frac{\partial f_{i}}{\partial x_{n}}\left(x_{k}\right)+\sum_{j=1}^{r} \psi_{j k} \frac{\partial h_{j}}{\partial x_{n}}\left(x_{k}\right)\right)\right\| \rightarrow 0 \tag{13}
\end{equation*}
$$

Since for large enough k we have $\left|x_{n k}\right| \geq\left|x_{i k}\right|, i=1, \ldots, n-1$, we may replace in (13) $\left\|x_{k}\right\|$ by $\left|x_{n k}\right|$ and then multiply the sums of (13) by $x_{n k}$.

In the notations of $\S 3.2$, by changing coordinates within $U_{0} \cap U_{n}$, one has $y_{0}=1 / x_{n}, y_{i}=x_{i} / x_{n}$ and the relations:

$$
\begin{align*}
& \begin{cases}\frac{\partial F_{j}}{\partial y_{i}}(y, t)=x_{n} \frac{\partial f_{j}}{\partial x_{i}}(x), & 1 \leq i \leq n-1,1 \leq j \leq p \\
\frac{\partial F_{j}}{\partial t_{l}}(y, t)=-\delta_{l, j}, & 1 \leq j, l \leq p \\
\frac{\partial F_{j}}{\partial y_{0}}(y, t)=-x_{n}\left(x_{1} \frac{\partial f_{j}}{\partial x_{1}}(x)+\ldots+x_{n} \frac{\partial f_{j}}{\partial x_{n}}(x)\right), & 1 \leq j \leq p\end{cases} \tag{14}\\
& \begin{cases}\frac{\partial H_{j}}{\partial y_{i}}(y, t)=x_{n} \frac{\partial h_{j}}{\partial x_{i}}(x), & 1 \leq i \leq n-1,1 \leq j \leq r \\
\frac{\partial H_{j}}{\partial t_{l}}(y, t)=0, & 1 \leq j \leq r, 1 \leq l \leq p \\
\frac{\partial H_{j}}{\partial y_{0}}(y, t)=-x_{n}\left(x_{1} \frac{\partial h_{j}}{\partial x_{1}}(x)+\ldots+x_{n} \frac{\partial h_{j}}{\partial x_{n}}(x)\right), & 1 \leq j \leq r\end{cases} \tag{15}
\end{align*}
$$

The condition (13) yields:

$$
\begin{equation*}
\left\|\left(\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{1}}+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{1}}\right)\left(y_{k}, t_{k}\right), \ldots,\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{n-1}}+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{n-1}}\right)\left(y_{k}, t_{k}\right)\right)\right\| \rightarrow \tag{16}
\end{equation*}
$$

We set $\vec{n}_{W_{k}}:=\left(0, \omega_{k},-\psi_{1 k}, \ldots,-\psi_{p k}\right)$, where ω_{k} is the vector of equation (16). Let W_{k} be the hyperplane defined by $\vec{n}_{W_{k}}$. Let \vec{n}_{i} and \vec{m}_{j} be the vectors defined in $\S 3.2$. Then, the vectors
$\left\{\vec{n}_{W_{k}}\right\}$ are linear combinations of \vec{n}_{i} and \vec{m}_{j} with coefficients $\left\{\psi_{i k}, \varphi_{j k}\right\}$, and the hyperplanes W_{k} are tangent to the levels of the function $g_{\mid \mathbb{X}}$. Since we have supposed

$$
\lim _{k \rightarrow \infty}\left(\psi_{1 k}, \ldots, \psi_{p k}\right)=\left(\psi_{1}, \ldots, \psi_{p}\right) \neq(0, \ldots, 0)
$$

it follows from definition of $\vec{n}_{W_{k}}$ and equation (16) that:

$$
\lim _{k \rightarrow \infty} \vec{n}_{W_{k}}=\left[0: 0: \ldots: 0: \psi_{1}: \ldots: \psi_{p}\right]
$$

Denote by W the hyperplane defined by $\left[0: 0: \ldots: 0: \psi_{1}: \ldots: \psi_{p}\right]$. Then $W=\lim _{k \rightarrow \infty} W_{k}$, which implies that W belongs to $\mathcal{C}_{z_{0}}^{\infty}$ and consequently f is not t-regular at z_{0} (see $\S 3.2$).
" $\Leftarrow "$. Let $z_{0} \in \mathbb{X}^{\infty}$ be not t-regular. By Definition 3.4, this means that there exist a sequence of points $\left\{\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{X} \cap\left(\left(U_{0} \cap U_{n}\right) \times \mathbb{K}^{p}\right)$ tending to z_{0}, and a sequence of hyperplanes W_{k} tangent to the levels of g at $\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)$, such that $W_{k} \rightarrow W \in \mathcal{C}_{z_{0}}^{\infty}$.

Let \vec{n}_{i} and \vec{m}_{j} be the vectors defined in $\S 3.2$. From $\S 3.2$, if f is not t-regular at z_{0} then there exist sequences $\left\{\tilde{\psi}_{k}=\left(\tilde{\psi}_{1 k}, \ldots, \tilde{\psi}_{p k}\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{K}^{p},\left\{\tilde{\varphi}_{k}=\left(\tilde{\varphi}_{1 k}, \ldots, \tilde{\varphi}_{r k}\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{K}^{r}$ and $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{K}$ such that $\vec{n}_{W_{k}}=\lambda_{k} \vec{n}_{0}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)+\sum_{i} \tilde{\psi}_{i k} \vec{n}_{i}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)+\sum_{j} \tilde{\varphi}_{j k} \vec{m}_{j}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)$ and that $\lim _{k \rightarrow \infty} \vec{n}_{W_{k}}=\left[0: 0: \ldots: 0: \tilde{\psi}_{1}: \ldots: \tilde{\psi}_{p}\right]$, where $\left(\tilde{\psi}_{1}, \ldots, \tilde{\psi}_{p}\right) \neq(0, \ldots, 0)$. By assumption, the vector $\vec{n}_{W_{k}}$ has the following expression:
(a) In the first coordinate of $\vec{n}_{W_{k}}$ one has: $\lambda_{k}+\left(\sum_{i=1}^{p} \tilde{\psi}_{i k} \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \tilde{\varphi}_{j k} \frac{\partial H_{i}}{\partial y_{0}}\right)\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)$.
(b) In the l-th coordinate, with $2 \leq l \leq n$, one has: $\left(\sum_{i=1}^{p} \tilde{\psi}_{i k} \frac{\partial F_{i}}{\partial y_{l}}+\sum_{j=1}^{r} \tilde{\varphi}_{j k} \frac{\partial H_{j}}{\partial y_{l}}\right)\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)$.
(c) In the q-th coordinate, with $n+1 \leq q \leq n+p$, one has: $-\tilde{\psi}_{q k}$.

We may take $\lambda_{k}:=-\sum_{i=1}^{p} \tilde{\psi}_{i k} \frac{\partial F_{i}}{\partial y_{0}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)-\sum_{j=1}^{r} \tilde{\varphi}_{j k} \frac{\partial H_{i}}{\partial y_{0}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)$. After, we divide out by $\mu_{k}:=\left\|\left(\tilde{\psi}_{1 k}, \ldots, \tilde{\psi}_{p k}\right)\right\|$. Then, we replace $\tilde{\psi}_{i k}$ and $\tilde{\varphi}_{j k}$ by $\psi_{i k}:=\frac{\tilde{\psi}_{i k}}{\mu_{k}}$ and $\varphi_{j k}:=\frac{\tilde{\varphi}_{j k}}{\mu_{k}}$, respectively. This implies that $\left\|\left(\psi_{1 k}, \ldots, \psi_{p k}\right)\right\|=1$ and $\lim _{k \rightarrow \infty} \vec{n}_{W_{k}}=\left[0: \ldots: 0: \psi_{1}: \ldots: \psi_{p}\right]$, where $\left(\psi_{1}, \ldots, \psi_{p}\right) \neq(0, \ldots, 0)$. Therefore,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{l}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{l}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)=0, \text { for any } 1 \leq l \leq n-1 \tag{17}
\end{equation*}
$$

By using (14) and (15), this is equivalent to:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{n k}\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial f_{i}}{\partial x_{l}}\left(x_{k}\right)+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial h_{j}}{\partial x_{l}}\left(x_{k}\right)\right)=0 \tag{18}
\end{equation*}
$$

for $1 \leq l \leq n-1$, and one has $\left|x_{n k}\right| \geq \frac{1}{\sqrt{n}}\left\|x_{k}\right\|$ for large enough k. Therefore, in order to get the limit (13) it remains to prove that (18) is true for $l=n$. The rest of our argument is devoted to this proof.

From relations (14) and (15), we obtain $x_{n} \frac{\partial f_{i}}{\partial x_{n}}(x)=-\sum_{j=0}^{n-1} y_{j} \frac{\partial F_{i}}{\partial y_{j}}(y, t)$ and

$$
x_{n} \frac{\partial h_{i}}{\partial x_{n}}(x)=-\sum_{j=0}^{n-1} y_{j} \frac{\partial H_{i}}{\partial y_{j}}(y, t)
$$

Therefore:

$$
\begin{align*}
x_{n k} \sum_{i=1}^{p} \psi_{i k} \frac{\partial f_{i}}{\partial x_{n}}\left(x_{k}\right) & =-\sum_{j=1}^{n-1} \sum_{i=1}^{p} y_{j k} \psi_{i k} \frac{\partial F_{i}}{\partial y_{j}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)-\sum_{i=1}^{p} \psi_{i k} y_{0 k} \frac{\partial F_{i}}{\partial y_{0}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right) \tag{19}\\
x_{n k} \sum_{i=1}^{r} \varphi_{i k} \frac{\partial h_{i}}{\partial x_{n}}\left(x_{k}\right) & =-\sum_{j=1}^{n-1} \sum_{i=1}^{r} y_{j k} \varphi_{i k} \frac{\partial H_{i}}{\partial y_{j}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)-\sum_{i=1}^{r} \varphi_{i k} y_{0 k} \frac{\partial H_{i}}{\partial y_{0}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right) \tag{20}
\end{align*}
$$

We will show that the following two terms tend to zero:

$$
\begin{array}{r}
\sum_{j=1}^{n-1} \sum_{i=1}^{p} y_{j k} \psi_{i k} \frac{\partial F_{i}}{\partial y_{j}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)+\sum_{j=1}^{n-1} \sum_{i=1}^{r} y_{j k} \varphi_{i k} \frac{\partial H_{i}}{\partial y_{j}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right), \text { and } \\
\sum_{i=1}^{p} \psi_{i k} y_{0 k} \frac{\partial F_{i}}{\partial y_{0}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)+\sum_{i=1}^{r} \varphi_{i k} y_{0 k} \frac{\partial H_{i}}{\partial y_{0}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right) \tag{22}
\end{array}
$$

First, we have:

$$
\begin{align*}
& \left\|\sum_{j=1}^{n-1} \sum_{i=1}^{p} y_{j k} \psi_{i k} \frac{\partial F_{i}}{\partial y_{j}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)+\sum_{j=1}^{n-1} \sum_{i=1}^{r} y_{j k} \varphi_{i k} \frac{\partial H_{i}}{\partial y_{j}}\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)\right\| \leq \tag{23}\\
& \left\|\frac{x_{k}}{x_{n k}}\right\|\left\|\left(\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{1}}+\sum_{i=1}^{r} \varphi_{i k} \frac{\partial H_{i}}{\partial y_{1}}\right)\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right), \ldots,\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{n-1}}+\sum_{i=1}^{r} \varphi_{i k} \frac{\partial H_{i}}{\partial y_{n-1}}\right)\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)\right)\right\|,
\end{align*}
$$

since by hypothesis $\left|y_{j k}\right|=\left|\frac{x_{j k}}{x_{n k}}\right| \leq 1$ for large enough k. Then we obtain from (17) that the right hand side of (23) tends to zero as $k \rightarrow \infty$, which shows that (21) tends to zero.

To show that (22) tends to zero, let us assume that the following inequality holds for large enough $k \gg 1$, the proof of which will be given below:

$$
\begin{align*}
& \text { (24) }\left\|\sum_{i=1}^{p} \psi_{i k} y_{0 k} \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \varphi_{j k} y_{0 k} \frac{\partial H_{j}}{\partial y_{0}}\right\| \ll \tag{24}\\
& \left\|\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{1}}+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{1}}, \ldots, \sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{n-1}}+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{n-1}}, \sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial t_{1}}, \ldots, \sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial t_{p}}\right)\right\| .
\end{align*}
$$

Then, by using (17), (24) and the equality $\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial t_{l}}=-\psi_{l k}$ for any $1 \leq l \leq p$ (implied by (14)), we have:

$$
\left\|\sum_{i=1}^{p} \psi_{i k} y_{0 k} \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \varphi_{j k} y_{0 k} \frac{\partial H_{j}}{\partial y_{0}}\right\| \ll\left\|\psi_{k}\right\|=1
$$

This implies $\lim _{k \rightarrow \infty}\left\|\left(\sum_{i=1}^{p} \psi_{i k} y_{0 k} \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \varphi_{j k} y_{0 k} \frac{\partial H_{j}}{\partial y_{0}}\right)\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right)\right\|=0$, which shows that (22) tends to zero as $k \rightarrow \infty$.

We have shown that (21) and (22) tend to zero as $k \rightarrow \infty$. From the equations (19) and (20), we have that the sum (21) $+(22)$ is equal to equation of (18) with $l=n$. These imply that (18) is also true for $l=n$. This completes our proof of relation (13) showing that z_{0} is an asymptotic critical point of f.

Let us now give the proof of (24). Suppose not; this means that there exists $\delta>0$ such that for $k \gg 1$ we have:

$$
\begin{equation*}
\frac{\left\|\sum_{i=1}^{p} \psi_{i k} y_{0 k} \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \varphi_{j k} y_{0 k} \frac{\partial H_{j}}{\partial y_{0}}\right\|}{\left\|\left(\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{1}}+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{1}}, \ldots, \sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial y_{n-1}}+\sum_{j=1}^{r} \varphi_{j k} \frac{\partial H_{j}}{\partial y_{n-1}},-\psi_{1 k}, \ldots,-\psi_{p k}\right)\right\|}>\delta, \tag{25}
\end{equation*}
$$

where, by relations (14), we have $-\psi_{l k}=\sum_{i=1}^{p} \psi_{i k} \frac{\partial F_{i}}{\partial t_{l}}$, for $1 \leq l \leq p$. The set:
$\mathcal{W}=\left\{((y, t), \psi, \varphi) \in\left(\left(U_{n} \cap U_{0}\right) \times \mathbb{K}^{p} \times \mathbb{K}^{p} \times \mathbb{K}^{r}\right) \cap\left(\mathbb{X} \times S_{1}^{p-1} \times \mathbb{K}^{r}\right) \mid(25)\right.$ holds for $\left.((y, t), \psi, \varphi)\right\}$ is a semi-algebraic set and we have $\left(\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right), \psi_{k}, \varphi_{k}\right) \in \mathcal{W}$ for $k \gg 1$. We observe that if $((y, t), \psi, \underset{\sim}{)}) \in \mathcal{W}$ then $((y, t), \underset{\sim}{\gamma} \psi, \gamma \varphi) \in \mathcal{W}$, for any $\gamma \in \mathbb{K}^{*}$. This last observation implies that $\left(\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right), \tilde{\psi}_{k}, \tilde{\varphi_{k}}\right) \in \mathcal{W}$, where $\tilde{\psi}_{k}:=\frac{\psi_{k}}{\left\|\left(\psi_{k}, \varphi_{k}\right)\right\|}$ and $\tilde{\varphi_{k}}:=\frac{\varphi_{k}}{\left\|\left(\psi_{k}, \varphi_{k}\right)\right\|}$.

Since $\lim _{k \rightarrow \infty} \psi_{k} \rightarrow \psi \neq 0$, one may suppose that $\lim _{k \rightarrow \infty}\left(\tilde{\psi_{k}}, \tilde{\varphi_{k}}\right) \rightarrow(\tilde{\psi}, \tilde{\varphi})$, with $(\tilde{\psi}, \tilde{\varphi}) \neq 0$. Then $\lim _{k \rightarrow \infty}\left(\left(\mathrm{y}_{k}, \mathrm{t}_{k}\right), \tilde{\psi}_{k}, \tilde{\varphi_{k}}\right)=\left(z_{0}, \tilde{\psi}, \tilde{\varphi}\right)$ and by the curve selection lemma [Mi] there exists an analytic curve $\lambda=(\phi, \psi, \varphi):\left[0, \varepsilon\left[\rightarrow \overline{\mathcal{W}}\right.\right.$ such that $\lambda(] 0, \varepsilon[) \subset \mathcal{W}$ and $\lambda(0)=\left(z_{0}, \psi, \varphi\right)$. We denote

$$
\begin{gathered}
\phi(s)=\left(y_{0}(s), y_{1}(s), \ldots, y_{n-1}(s), t_{1}(s), \ldots, t_{p}(s)\right), \quad \psi(s)=\left(\psi_{1}(s), \ldots, \psi_{p}(s)\right), \text { and } \\
\varphi(s)=\left(\varphi_{1}(s), \ldots, \varphi_{r}(s)\right)
\end{gathered}
$$

Since $(F, H)(\phi(s)) \equiv 0$, we have:

$$
0=\frac{d}{d s}(F, H)(\phi(s))=y_{0}^{\prime}(s) \frac{\partial(F, H)}{\partial y_{0}}(\phi(s))+\sum_{i=1}^{n-1} y_{i}^{\prime}(s) \frac{\partial(F, H)}{\partial y_{i}}(\phi(s))+\sum_{i=1}^{p} t_{i}^{\prime}(s) \frac{\partial(F, H)}{\partial t_{i}}(\phi(s))
$$

where $\frac{\partial(F, H)}{\partial y_{i}}=\left(\frac{\partial F_{1}}{\partial y_{i}}, \ldots, \frac{\partial F_{p}}{\partial y_{i}}, \frac{\partial H_{1}}{\partial y_{i}}, \ldots, \frac{\partial H_{r}}{\partial y_{i}}\right)$.
Multiplying by $(\psi(s), \varphi(s))$ we obtain:

$$
\begin{align*}
& -y_{0}^{\prime}(s)\left(\left(\sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{0}}\right)(\phi(s))\right)= \tag{26}\\
& \quad \sum_{l=1}^{n-1} y_{l}^{\prime}(s)\left(\left(\sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial y_{l}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{l}}\right)(\phi(s))\right)+\sum_{l=1}^{p} t_{l}^{\prime}(s) \sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial t_{l}}(\phi(s)) .
\end{align*}
$$

Since ϕ is analytic, thus bounded at $s=0$, by applying the Cauchy-Schwarz inequality one finds a constant $C>0$ such that:

$$
\begin{align*}
& \text { 27) }\left|y_{0}^{\prime}(s)\left(\sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{0}}\right)(\phi(s))\right| \leq \tag{27}\\
& C\left\|\left(\left(\sum_{i=1}^{p} \psi_{i} \frac{\partial F_{i}}{\partial y_{1}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{1}}\right)(\phi), \ldots,\left(\sum_{i=1}^{p} \psi_{i} \frac{\partial F_{i}}{\partial y_{n-1}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{n-1}}\right)(\phi), \psi_{1}, \ldots, \psi_{p}\right)(s)\right\| .
\end{align*}
$$

We have $l:=\operatorname{ord}_{s} y_{0}^{\prime}(s) \geq 0$ and $\operatorname{ord}_{s} y_{0}(s)=l+1 \geq 1$ since $y_{0}(0)=0$. Thus $\left|y_{0}(s)\left(\sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \psi_{j} \frac{\partial H_{j}}{\partial y_{0}}\right)(\phi(s))\right| \ll\left|y_{0}^{\prime}(s)\left(\sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \psi_{j} \frac{\partial H_{j}}{\partial y_{0}}\right)(\phi(s))\right|$.

This and (27) give:

$$
\begin{aligned}
& \left\|y_{0}(s)\left(\sum_{i=1}^{p} \psi_{i}(s) \frac{\partial F_{i}}{\partial y_{0}}+\sum_{j=1}^{r} \psi_{j} \frac{\partial H_{j}}{\partial y_{0}}\right)(\phi(s))\right\| \\
& \left\|\left(\left(\sum_{i=1}^{p} \psi_{i} \frac{\partial F_{i}}{\partial y_{1}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{1}}\right)(\phi), \ldots,\left(\sum_{i=1}^{p} \psi_{i} \frac{\partial F_{i}}{\partial y_{n-1}}+\sum_{j=1}^{r} \varphi_{j} \frac{\partial H_{j}}{\partial y_{n-1}}\right)(\phi), \psi_{1}, \ldots, \psi_{p}\right)(s)\right\|,
\end{aligned}
$$

which contradicts our assumption that $(\phi(s), \psi(s), \varphi(s)) \in \mathcal{W}$, for $s \in] 0, \varepsilon[$. Therefore, we conclude that (24) holds, which completes the proof of Theorem 4.1.

The above theorem extends for mappings defined on X the equivalence proved in [DRT, Theorem 3.2]. It also extends an equivalence proved for $p=1$ in $[\mathrm{Pa} 2, \mathrm{ST}]$.
Remark 4.2. In Theorem 4.1 we suppose that $X \subset \mathbb{K}^{n}$ is a complete intersection. It is well known that any manifold is a locally complete intersection (see e.g [GP, p. 18]). So, in the general case of a smooth affine variety X, one may take a locally finite cover $\left\{U_{i}\right\}$ of \mathbb{K}^{n} such that the manifold $X_{i}:=X \cap U_{i}$ is a complete intersection. Then we consider the normal vector fields on each X_{i} as in $\S 3.2$ and we use a partition of unity subordinate to the cover $\left\{U_{i}\right\}$ to obtain normal vector fields defined on X. Then the proof of Theorem 4.1 in the general case is the same as above.

5. t-REGULARITY AND JELONEK SET

In this section, we consider $f: X \rightarrow \mathbb{R}^{p}$, where $\operatorname{dim} X=p$. We prove that, in this case, t-regularity is related with the Jelonek set J_{f} ([Je1]). We begin with:
Definition 5.1 ([Je1, Definition 3.3]). Let $f: M \rightarrow N$ be a continuous mapping, where M, N are manifolds. We say that f is proper at a point $t_{0} \in N$ if there exists an open neighbourhood U of t_{0} such that the restriction $f_{\mid f-1}(U): f^{-1}(U) \rightarrow U$ is a proper mapping. We denote by J_{f} the set of points at which f is not proper.

See for instance [Je1, Je2] for applications and related problems with J_{f}.
Definition 5.2. Let $f: X \rightarrow \mathbb{K}^{p}$ be the restriction of a polynomial mapping to a smooth variety X, where $\operatorname{dim} X \geq p$. We set

$$
\begin{equation*}
\mathcal{N} \mathcal{T}_{\infty}(f):=\left\{t_{0}=\tau\left(z_{0}\right) \in \mathbb{K}^{p} \mid z_{0} \in \mathbb{X}^{\infty} \text { and } z_{0} \text { is not } t \text {-regular }\right\} \tag{28}
\end{equation*}
$$

When $\operatorname{dim} X=p$, we have:
Proposition 5.3. Let $X \subset \mathbb{R}^{n}$ be a smooth affine variety over \mathbb{R}. We suppose that X is a global complete intersection. In other words $X=\left\{x \in \mathbb{R}^{n} \mid h_{1}(x)=h_{2}(x)=\ldots=h_{r}(x)=0\right\}$ and $\operatorname{rank} \mathrm{D} h(x)=r$, for any $x \in X$, where $h=\left(h_{1}, \ldots, h_{r}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ and $\mathrm{D} h(x)$ denotes the Jacobian matrix of h at x.

Let $f=\left(f_{1}, \ldots, f_{p}\right): X \rightarrow \mathbb{R}^{p}$ be the restriction of a polynomial mapping to X, where $\operatorname{dim} X=n-r=p$. Then $\mathcal{N} \mathcal{T}_{\infty}(f)=K_{\infty}(f)=J_{f}$.

Proof. The equality $\mathcal{N} \mathcal{T}_{\infty}(f)=K_{\infty}(f)$ follows directly from Theorem 4.1. Thus, we need only show the equality $K_{\infty}(f)=J_{f}$.

The inclusion $K_{\infty}(f) \subset J_{f}$ follows directly from Definitions 3.7 and 5.1. On the other hand, let $t_{0} \in J_{f}$. By the curve selection lemma [Mi], there exists an analytic path

$$
\left.\phi=\left(\phi_{1}, \ldots, \phi_{n}\right):\right] 0, \epsilon\left[\rightarrow X \subset \mathbb{R}^{n}\right.
$$

such that $\lim _{s \rightarrow 0}\|\phi(s)\|=\infty$ and $\lim _{s \rightarrow 0} f(\phi(s))=t_{0}$.
Consider

$$
\begin{align*}
& \frac{\partial f_{i}}{\partial x}(x):=\left(\frac{\partial f_{i}}{\partial x_{1}}(x), \ldots, \frac{\partial f_{i}}{\partial x_{n}}(x)\right), \text { for } i=1, \ldots, p \tag{29}\\
& \frac{\partial h_{j}}{\partial x}(x):=\left(\frac{\partial h_{j}}{\partial x_{1}}(x), \ldots, \frac{\partial h_{j}}{\partial x_{n}}(x)\right), \text { for } j=1, \ldots, r \tag{30}
\end{align*}
$$

Since $n=h+r$, there exist analytic curves $\tilde{\lambda}(s), \tilde{\varphi}_{1}(s), \ldots, \tilde{\varphi}_{p}(s), \tilde{\psi}_{1}(s), \ldots, \tilde{\psi}_{r}(s)$, from $] 0, \epsilon[$ to \mathbb{R}, such that $\left(\tilde{\lambda}(s), \tilde{\varphi}_{1}(s), \ldots, \tilde{\varphi}_{p}(s), \tilde{\psi}_{1}(s), \ldots, \tilde{\psi}_{r}(s)\right) \neq(0, \ldots, 0)$, for any $\left.s \in\right] 0, \epsilon[$, and the following equality holds:

$$
\begin{equation*}
\tilde{\lambda}(s)\left(\phi_{1}(s), \ldots, \phi_{n}(s)\right)=\sum_{i=1}^{p} \tilde{\varphi}_{i}(s) \frac{\partial f_{i}}{\partial x}(\phi(s))+\sum_{j=1}^{r} \tilde{\psi}_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s)) . \tag{31}
\end{equation*}
$$

Let $\tilde{\varphi}(s):=\left(\tilde{\varphi}_{1}(s), \ldots, \tilde{\varphi}_{p}(s)\right)$. Let us assume that there exists $0<\epsilon_{1} \leq \epsilon$ such that $\tilde{\varphi}(s) \neq 0$, for any $s \in] 0, \epsilon_{1}[$, the proof of which will be given below.

We consider the curves $\lambda(s), \varphi(s):=\left(\varphi_{1}(s), \ldots, \varphi_{p}(s)\right)$ and $\psi(s):=\left(\psi_{1}(s), \ldots, \psi_{r}(s)\right)$, where $\lambda(s):=\frac{\tilde{\lambda}(s)}{\|\tilde{\varphi}(s)\|}, \varphi_{i}(s):=\frac{\tilde{\varphi}_{i}(s)}{\|\tilde{\varphi}(s)\|}, i=1, \ldots, p$, and $\psi_{j}(s)=\frac{\tilde{\psi}_{j}(s)}{\|\tilde{\varphi}(s)\|}, j=1, \ldots, r$.

Then $\|\varphi(s)\|=1$ and we can rewrite equation (31) as follows:

$$
\begin{equation*}
\lambda(s)\left(\phi_{1}(s), \ldots, \phi_{n}(s)\right)=\sum_{i=1}^{p} \varphi_{i}(s) \frac{\partial f_{i}}{\partial x}(\phi(s))+\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s)) . \tag{32}
\end{equation*}
$$

By chain rule and from (32), we obtain the following equalities:

$$
\begin{align*}
\sum_{i=1}^{p} \varphi_{i}(s) & \frac{d}{d s} f_{i}(\phi(s))+\sum_{j=1}^{r} \psi_{j}(s) \frac{d}{d s} h_{j}(\phi(s))= \tag{33}\\
& \left\langle\sum_{i=1}^{p} \varphi_{i}(s) \frac{\partial f_{i}}{\partial x}(\phi(s))+\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s)) ; \frac{d}{d s} \phi(s)\right\rangle=\frac{1}{2} \lambda(s)\left(\frac{d}{d s}\|\phi(s)\|^{2}\right) .
\end{align*}
$$

Since $\lim _{s \rightarrow 0} f(\phi(s))=t_{0}$ and $h(\phi(s)) \equiv 0$, we have that $\operatorname{ord}_{\mathrm{s}}\left(\frac{d}{d s} f_{i}(\phi(s))\right) \geq 0$, for $i=1, \ldots, p$, and $\frac{d}{d s} h_{j}(\phi(s)) \equiv 0$, for $j=1, \ldots, r$. These and (33) imply:

$$
\begin{equation*}
0 \leq \operatorname{ord}_{\mathbf{s}}\left(\lambda(s)\left(\frac{d}{d s}\|\phi(s)\|^{2}\right)\right)<\operatorname{ord}_{\mathbf{s}}\left(\lambda(s)\|\phi(s)\|^{2}\right) \tag{34}
\end{equation*}
$$

On the other hand, the equality (32) yields:

$$
\begin{equation*}
\operatorname{ord}_{\mathrm{s}}\left(|\lambda(s)|\|\phi(t)\|^{2}\right)=\operatorname{ord}_{\mathrm{s}}\left(\|\phi(s)\|\left\|\sum_{i=1}^{p} \varphi_{i}(s) \frac{\partial f_{i}}{\partial x}(\phi(s))+\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s))\right\|\right) \tag{35}
\end{equation*}
$$

From (34), we conclude that (35) is positive, which implies:

$$
\begin{equation*}
\lim _{s \rightarrow 0}\|\phi(s)\|\left\|\sum_{i=1}^{p} \varphi_{i}(s) \frac{\partial f_{i}}{\partial x}(\phi(s))+\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s))\right\|=0 \tag{36}
\end{equation*}
$$

Therefore, since $\lim _{s \rightarrow 0} f(\phi(s))=t_{0},\|\varphi(s)\|=1, \sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s)) \in\left(T_{\phi(s)} X\right)^{\perp}$, we conclude from (36), Definition 3.7 and Lemma 3.6 that $t_{0} \in K_{\infty}(f)$.

Let us now show that there exists $0<\epsilon_{1} \leq \epsilon$ such that $\tilde{\varphi}(s) \neq 0$, for any $\left.s \in\right] 0, \epsilon_{1}[$. Suppose not; this means that there exists a sequence $\left.\left\{s_{k}\right\}_{k \in \mathbb{N}} \subset\right] 0, \epsilon\left[\right.$ such that $\lim _{k \rightarrow \infty} s_{k}=0$ and $\tilde{\varphi}\left(s_{k}\right)=(0, \ldots, 0)$. This and (31) yield the following equality:

$$
\begin{equation*}
\tilde{\lambda}\left(s_{k}\right)\left(\phi_{1}\left(s_{k}\right), \ldots, \phi_{n}\left(s_{k}\right)\right)=\sum_{j=1}^{r} \tilde{\psi}_{j}\left(s_{k}\right) \frac{\partial h_{j}}{\partial x}\left(\phi\left(s_{k}\right)\right), \text { for any } k \in \mathbb{N} \tag{37}
\end{equation*}
$$

We remember that $\left(\tilde{\lambda}(s), \tilde{\varphi}_{1}(s), \ldots, \tilde{\varphi}_{p}(s), \tilde{\psi}_{1}(s), \ldots, \tilde{\psi}_{r}(s)\right) \neq(0, \ldots, 0)$, for any $\left.s \in\right] 0, \epsilon[$. Consequently, the condition on $\tilde{\varphi}$ implies $\left(\tilde{\lambda}\left(s_{k}\right), \tilde{\psi}_{1}\left(s_{k}\right), \ldots, \tilde{\psi}_{r}\left(s_{k}\right)\right) \neq(0, \ldots, 0)$, for any $k \in \mathbb{N}$. Moreover, since $\lim _{k \rightarrow \infty} s_{k}=0$, we have $\lim _{k \rightarrow \infty}\left\|\phi\left(s_{k}\right)\right\|=\infty$ and $\lim _{k \rightarrow \infty} f\left(\phi\left(s_{k}\right)\right)=t_{0}$. From these conditions, equality (37) and curve selection lemma, we can obtain new analytic curves $\lambda(s), \psi_{1}(s), \ldots, \psi_{r}(s)$ and an analytic curve $\left.\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right):\right] 0, \epsilon\left[\rightarrow X \subset \mathbb{R}^{n}\right.$ such that $\lim _{s \rightarrow 0}\|\alpha(s)\|=\infty, \lim _{s \rightarrow 0} f(\alpha(s))=t_{0},\left(\lambda(s), \psi_{1}(s), \ldots, \psi_{r}(s)\right) \neq(0, \ldots, 0)$, for any s, and the following equality holds:

$$
\begin{equation*}
\lambda(s)\left(\alpha_{1}(s), \ldots, \alpha_{n}(s)\right)=\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s)) \tag{38}
\end{equation*}
$$

Since $\alpha(s) \in X$, we have $h_{j}(\alpha(s)) \equiv 0$, which implies $\frac{d}{d s} h_{j}(\alpha(s)) \equiv 0$, for $j=1, \ldots, r$. These and chain rule give:

$$
\begin{equation*}
0 \equiv \sum_{j=1}^{r} \psi_{j}(s) \frac{d}{d s} h_{j}(\alpha(s))=\left\langle\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\alpha(s)), \frac{d}{d s} \alpha(s)\right\rangle=\frac{1}{2} \lambda(s)\left(\frac{d}{d s}\|\alpha(s)\|^{2}\right) \tag{39}
\end{equation*}
$$

Since λ and α are analytic curves, equality (39) gives $\lambda(s) \equiv 0$ or $\frac{d}{d s}\|\alpha(s)\|^{2} \equiv 0$. If $\lambda(s) \equiv 0$ then, from (38) and statements on $\lambda, \psi_{1}, \ldots, \psi_{r}$, we obtain that $\sum_{j=1}^{r} \psi_{j}(s) \frac{\partial h_{j}}{\partial x}(\phi(s)) \equiv 0$, with $\left(\psi_{1}(s), \ldots, \psi_{r}(s)\right) \neq(0, \ldots, 0)$. But this contradicts the hypothesis that X is a global intersection. If $\frac{d}{d s}\|\alpha(s)\|^{2} \equiv 0$ then $\|\alpha(s)\|^{2}$ is constant, which contradicts the assumption $\lim _{s \rightarrow 0}\|\alpha(s)\|=\infty$. Therefore, we have shown by contradiction that the assertion "there exists $0<\epsilon_{1} \leq \epsilon$ such that $\tilde{\varphi}(s) \neq 0$, for any $\left.s \in\right] 0, \epsilon_{1}[$," is true, which completes the proof of Proposition 5.3.

The above proposition extends for mappings defined on X the equality proved in $[\mathrm{KOS}$, Proposition 3.1].

6. Acknowledgement

The author wishes to thank his advisors Professor Maria Aparecida S. Ruas and Professor Mihai Tibăr for helpful conversations in developing this paper. The author acknowledges Brazilian grant FAPESP (Proc.2008/10563-4) and Project USP-COFECUB Uc Ma 133/12.

References

[Br] S. A. Broughton, Milnor number and the topology of polynomial hypersurfaces, Inventiones Math. 92 (1988), 217-241. DOI: 10.1007/BF01404452
[CDTT] Y. Chen, L. R. G. Dias, K. Takeuchi, M. Tibăr, Invertible polynomial mappings via Newton non-degeneracy, Ann. Inst. Fourier (Grenoble), to appear.
[CDT] Y. Chen, L. R. G. Dias, M. Tibăr, On Newton non-degeneracy of polynomial mappings, (2012). arXiv:1207.1612
[CT] Y. Chen, M. Tibăr, Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett. 19(1) (2012), 59-79. DOI: 10.4310/MRL.2012.v19.n1.a6
[DG] D. D'Acunto, V. Grandjean, On gradient at infinity of semialgebraic functions, Ann. Polon. Math. 87 (2005), 39-49. DOI: 10.4064/ap87-0-4
[DRT] L. R. G. Dias, M. A. S. Ruas, M. Tibăr, Regularity at infinity of real mappings and a Morse-Sard theorem, Journal of Topology 5 (2012), 323-340. DOI: 10.1112/jtopol/jts005
[Ga] T. Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math. 119 (1999), 157-167. DOI: 10.1023/A:1001702518505
[GP] V. Guillemin, A. Pollack, Differential topology, Prentice-Hall Inc., Englewood Cliffs, N.J., 1974.
[HL] HÀ H. V., Lê D. T., Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9(1) (1984), 21-32 (1985).
[HP] Hà H. V. and Pham T. S., Minimizing polynomial functions, Acta Math. Vietnam. 32 (2007), 71-82.
[Je1] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315(1) (1999), 1-35.
[Je2] Z. Jelonek, Geometry of real polynomial mappings, Math. Z. 239(2) (2002), 321-333.
[Je3] Z. Jelonek, On the generalized critical values of a polynomial mapping, Manuscripta Math. 110(2) (2003), 145-157.
[Je4] Z. Jelonek, On asymptotic critical values and the Rabier theorem, Geometric singularity theory, Banach Center Publ. 65 (Polish Academy of Sciences, Warsaw, 2004), 125-133.
[Kuo] T. Z. Kuo, Characterizations of v-sufficiency of jets. Topology 11 (1972), 115-131.
[KOS] K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geometry 56 (2000), 67-92.
[LW] Lê D. T., C. Weber, Polynômes à fibres rationnelles et conjecture jacobienne à 2 variables, C. R. Acad. Sci. Paris Sér. I Math. 320(5) (1995), 581-584.
[Mi] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies 61, Princeton 1968.
[NZ] A. Némethi, A. Zaharia, On the bifurcation set of a polynomial and Newton boundary, Publ. Res. Inst. Math. Sci. 26 (1990), 681-689.
[Pa1] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97(3) (1995), 369-384.
[Pa2] A. Parusiński, A note on singularities at infinity of complex polynomials, Simplectic singularities and geometry of gauge fields (Warsaw, 1995), Banach Center Publication 39 (1997), 131-141.
[PZ] A. L. Păunescu, A. Zaharia, On the Eojasiewicz exponent at infinity for polynomial functions, Kodai Math. J. 20(3) (1997), 269-274.
[Ra] P.J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2) 146(3) (1997), 647-691.
[ST] D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. Journal 80 (3) (1995), 771-783.
[Su] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbf{C}^{2}, J. Math. Soc. Japan 26 (1974), 241-257. DOI: 10.2969/jmsj/02620241
[Ti1] M. TibăR, Topology at infinity of polynomial mappings and Thom regularity condition, Compositio Math. 111(1) (1998), 89-109.
[Ti2] M. Tı̆Ăr, Asymptotic equisingularity and topology of complex hypersurfaces, Internat. Math. Res. Notices no. 18 (1998), 979-990.
[Ti3] M. TibăR, Regularity at infinity of real and complex polynomial maps, Singularity Theory, the C.T.C. Wall Anniversary Volume, LMS Lecture Notes Series 263 (1999), 249-264.
[Ti4] M. Tıbăr, Polynomials and Vanishing Cycles, Cambridge Tracts in Mathematics 170, Cambridge University Press (2007).
[TZ] M. Tibăr, A. Zaharia, Asymptotic behaviour of families of real curves, Manuscripta Math. 99(3) (1999), 383-393.
[Yo] N. Young, An introduction to Hilbert space, Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, (1988).

Faculdade de Matemática, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, 1F153-CEP: 38.408-100, Uberlândia, Brazil.

E-mail address: lrgdias@famat.ufu.br

[^0]: 2010 Mathematics Subject Classification. 14D06, 51N10, 32S20.
 Key words and phrases. polynomial mapping, bifurcation values, Rabier condition, t-regularity, nonproperness set, fibration, regularity at infinity.

