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ON REGULARITY CONDITIONS AT INFINITY

L.R.G. DIAS

ABsTRACT. Let f: X — KP be a restriction of a polynomial mapping on X, where X C K™
is a smooth affine variety. We prove the equivalence of regularity conditions at infinity, which
are useful to control the bifurcation set of f.

1. INTRODUCTION

Let f: X — KP? be a differentiable mapping, where K =R or C, X is a smooth affine variety
and dim X > p. The bifurcation set of f, denoted by B(f), is the smallest subset of K? such
that f is a locally trivial topological fibration on K? \ B(f).

The elements of B(f) may come from critical values but also from regular values of f, i.e.,
B(f)\ (B(f) N f(Singf)) can be not empty. In the example f: K2 — K, f(z,y) = = + 22y, the
value 0 € K is not critical but there is no trivial fibration on any neighborhood of 0.

The study of bifurcation set B(f) has connections with many other topics such as problems of
optimization of polynomial functions f: R™ — R (see e.g. [HP]), generalizations of Ehresmann’s
Theorem (see e.g. [Ga, Je3, Ral), Jacobian Conjecture (see e.g. [LW, ST]), global Lojasiewicz
exponents (see e.g. [PZ, DG]), equisingularity and Milnor numbers (see e.g. [Ga, Pal, ST, Ti2,
Ti3]), stratification theory (see e.g. [KOS, Til]), etc...

A complete characterization of B(f) \ (B(f) N f(Singf)) is yet an open problem. In fact, a
characterization of B(f)\(B(f)Nf(Singf)) is available only for polynomial functions f: K? — K,
see [Su, HL] for K = C and [TZ] for K =R.

Through the use of regularity conditions at infinity, one has obtained some ways to approxi-
mate B(f). For polynomial functions f: K™ — K| see for instance [Br, CT, NZ, Pal, Pa2, PZ,
ST, Ti2, Ti3, Tid].

For mappings, i.e., p > 1, Rabier [Ra] considered a regularity condition, which we call here
Rabier condition. From this condition, Rabier defined the set of asymptotic critical values Koo (f)
and proved that B(f) C (f(Singf) U Ko (f)). In fact, Rabier’s results apply to C? maps
f: M — N, where M, N are Finsler manifolds.

For polynomial mappings f: C* — CP, Gaffney |Ga| defined the generalized Malgrange condi-
tion, which we call here Gaffney condition. This condition yields the set Ag__ (f) of non-regular
values at infinity and, under additional hypothesis on f, Gaffney obtained

B(f) C (f(Singf) U Ag..(f))-

Kurdyka, Orro and Simon [KOS] also considered Rabier condition. They obtained an equiv-
alence between Rabier condition and another condition which depends on Kuo function([Kuo])
(we call this last of Kuo-KOS condition). They showed that, for C? semi-algebraic mappings
f: R™ — RP (respectively, polynomial mappings f: C* — CP), the set K (f) is a closed semi-
algebraic set (respectively, a closed algebraic set) of dimension at most p — 1.
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Jelonek [Je3] used another condition, which turns out to be equivalent to Rabier condition
and to Gaffney condition. We call that condition Jelonek condition. Then, Jelonek [Je3] gave a
more direct proof of the inclusion B(f) C (f(Singf) U K (f))-

The above four conditions are asymptotic conditions, which depend on the behaviours of the
fibres of f and Jacobian matrix of f.

Another regularity condition at infinity is the t-regularity, a geometric grounded condition at
infinity. The t-regularity has been introduced in [ST] for polynomial functions f: C* — C and
in [Ti3| for polynomial functions f: R™ — R.

In [DRT], we considered the t-regularity for C! semi-algebraic mappings f: R” — R? and we
proved that t-regularity is equivalent to the conditions of [Ra, KOS| (consequently, equivalent
to the conditions of [Ga, Je3]).

In this paper, we extend the use of t-regularity to algebraic mappings f: X — K? and we
replace K™ in the above results by a smooth affine variety X.

In section 4, we prove that ¢-regularity is equivalent to Rabier condition for f: X — KP (The-
orem 4.1). This extends for mappings defined on X the equivalence proved in [DRT, Theorem
3.2] and the equivalence proved for p = 1 in [Pa2, ST].

It follows from Jelonek [Je4] that Rabier, Gaffney, Kuo-KOS and Jelonek conditions are also
equivalent for mappings defined on X. Therefore, our Theorem 4.1 completes for these mappings
the equivalences above mentioned in the case of mappings f: K™ — KP?.

Another important set in the study of polynomial mappings is the set Jy of points at which
f is not proper (see e.g. [Jel, Je2]). It was proved in [KOS, Proposition 3.1] that in the case of
semi-algebraic maps f: R™ — R", the set Jy coincides with Ko (f). This equality is crucial in
the proof of the injectivity criterion of [CDTT, CDT].

In section 5, we consider f: X — RP, where dim X = p. We prove (Proposition 5.3) that
K (f) = Jf, which extends for mappings defined on X the equality proved in [KOS, Proposition
3.1].

2. BASIC DEFINITIONS

The goal of this section is to present Lemma 2.1, which will be useful to compute the Rabier
function. We also introduce here some notations.

Let V, W be normed finite dimensional vector spaces over K, where K = R, C. We denote
by L(V,W) the set of linear mappings from V to W. For simplicity, we denote L(V,K) by V*.
Given A € L(V, W), we denote by A* € L(W*,V*) the adjoint operator induced by A. For any
linear subspace V of K", we set

VEii={weK" | (w,v)=0,YveV}
We consider the following norm on L(V, W):
(1) |A|| := max {||A(z)||; x € V and ||| = 1}, where A € L(V,W).

We denote by e; the vector of K® with 1 in the i-th coordinate and zeros elsewhere. Let
A € L(K™,K), we denote by ||(A(e1),. .., A(en))| the Euclidean norm of the vector

(A(er),...,A(e,)) € K™
Another norm on £(K",K) can be defined as follows:
(2) [A[l = [I(A(er)s - - Alen)) -

It is well known that norms (1) and (2) of £(K",K) are equivalents (see e.g. [Yo, Theorem
6.8]). The next lemma will be useful in the sequel:
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Lemma 2.1. Let V C K" be a linear subspace of K. Given A € L(K",K), we denote by A}y
the restriction of A to V and we set:

3) [ A lls := min {}(A(er) ., Alea)) +wll;w € V).
Then, the norms (1) and (3) of Ay are equivalent (indeed, one has ||Ajy |3 = [|Av|l)-

Proof. Let A € L(K" K). For any vector w € V+ and v = (vy,...,v,) € V, we may write
Aw) = Y viA(e;) = (v, (Aler),..., Alen))) = (v, (A(er),. .., Ale,)) + w), where the last
equality follows from the fact that w € V+. These equalities and Cauchy-Schwarz inequality
imply:

(4) [A@)[ = l[{v, (A1), ..., Alen)) + w) | < [|v[l[[(Ale), .. ., Alen)) + wl],

If ||v]| = 1, the inequality (4) gives ||A(v)|| < ||(A(e1), ..., A(en))+w]||. Since v, w are arbitrary
elements, this last inequality implies:
(5) lAw ] < 1Ay -

To show [|Ajv[|s < [|Ajv ], we write (A(e1), ..., A(en)) = vi+ w1, with vi € V and wy € V+

(this is possible since K® = V' @ V). Then, for any v € V, one obtains
A(v) = (v, (A(er), ..., Alen))) = (v,v1 + w1) = (v, v1),
where the last equality follows from the fact that wi; € V*.

If vi = 0 then Ay = 0 and (A(e1),...,A(en)) = wi, which implies [[Ay| = 0 and
[ Ajv|l1 = 0. Therefore, the inequality || A}y [|3 < [|Av|| holds if v; = 0.

If vi # 0, we set z := 2. Thus, z € V, Izl =1 and A(z) = (z,v1) = ||v1]|, where the last
equality follows from definition of z. Since ||z|| = 1, one has [|A(2)|| = [|v1|| < [[Av ]

To finish, we observe that (A(ey),...,A(e,)) — w1 = vy, with w; € V+. By definition of
| Ajv |3, this last equality implies |[Ajy[[3 < [[v1]|. Thus, we conclude [[Ajy[[3 < [[vi]| < |4y ],
which follows || A}y [[3 < [[Ajv[|. Therefore, from this last inequality and inequality (5), we obtain
lAjv |l = || Ajv |3, which finishes the proof. O

3. REGULARITY CONDITIONS FOR MAPPINGS

We introduce the main definitions leading to the notion of ¢-regularity and we define Rabier
condition in §3.3.

3.1. t-regularity. Let X C K™ be a K-analytic variety, K = R or C. We denote the set of
regular points of X by X, and the set of singular points of X by Aiins. We assume that X
contains at least a regular point.

Definition 3.1. Let g : X — K be an analytic function defined in some neighbourhood of X" in
K™. Let &y denote the subset of &, Where g is a submersion. The relative conormal space of
g is defined as follows:

Cy(X) := closure{(z, H) € Xo x P™ ' | T,(¢7 (9(2))) Cc H} C X x P~ 1,
We denote by 7 : Cy(X) — X the projection 7(z, H) = z.
For any y € X such that g(y) = 0, we define Cy ,(X) := 7~ (y). The following result shows

that Cy , (X) depends on the germ of g at y only up to multiplication by some invertible analytic
function germ ~.

Lemma 3.2 ([Ti4, Lemma 1.2.7]). Let v : (K™, y) — K be an analytic function such that
V(y) # 0. Then Cygy(X) = Cyy(X). O
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We use coordinates (z1,...,z,) for K” and coordinates [zg : 1 : ... : z,] for the projective
space P"*. We denote by H* = {[zg : z1 : ... : z,] € P" | 2y = 0} the hyperplane at infinity.

Let f : X — KP be the restriction of a polynomial mapping to a smooth affine variety X C K",
where dim X > p. We set X := graphf as the closure of the graph of f in P" x K? and we set
X :=XnN (H* x KP).

We consider the affine charts U; x KP of P* xKP, where U; = {z; # 0} and j =0,1,...,n. We
identify the chart Uy with the affine space K™. Thus, we have XN (Uy x KP) = X\ X*® = graphf
and X*° is covered by the charts U; x KP,... U, x KP.

If g denotes the projection to the variable zg in some affine chart U; x KP, then the relative
conormal Cy(X\X> NU; x KP) C X x P*"*P~1 and the projection 7 : Cy (X\X* NU; x KP) — X,
7(y, H) =y, are well-defined.

Let us then consider the space 7~ !(X>), which is well-defined for every chart U; x K as a
subset of Cy(X\X* NU; x K?). By Lemma 3.2, the definitions coincide at the intersections of
the charts and one has:

Definition 3.3. The space of characteristic covectors at infinity is the well-defined set
C>® = H(X™).
For any zp € X*°, we denote CJ7 := 7 1(20).
We denote by 7 : P* x KP — KP the second projection. The relative conormal space

C-(P™ x KP) is defined as in Definition 3.1, where the function ¢ is replaced by the applica-
tion 7.

Definition 3.4 (t-regularity). We say that f is t-regular at zo € X* if C-(P" x KP) N CZ2 = 0.

3.2. t-regularity interpretation. Let X C K™ be a smooth affine variety over K. We suppose
that X is a global complete intersection. In other words,

X ={z K" | hi(z) = ho(z) = ... = h.(z) =0}
and rank Dh(x) = r, where h = (hqy,...,h,) : K® — K" and Dh(z) denotes the Jacobian matrix
of h at x.

Let f = (f1,...,fp): X — KP? be the restriction of a polynomial mapping to X, where
dimX > p. Given zy € X, up to some linear change of coordinate, we may assume that
zo € X N (U, x KP). In the intersection of charts (Uy N U, ) x KP, we consider the change of
coordinates &1 = y1/Yoy .- s Tn—1 = Yn—1/Y0, Tn = 1/yo, where (21,...,2,) are the coordinates
in Uy and (Yo, - - -,Yn—1) are those in U,. Then for i =1,...,pand j =1,...,r, we define:

(6) Fz(yat) = Fi(y07yla e 7il/n—17t17 e 7tp) = f’L (yl/y07 e aynfl/y(h 1/3/0) - ti?
(7) Hj(y,t) = Hj (Y0, Y1, Yn—1,t1, - - -5 tp) = hi(y1/Y0s - s Yn—1/Y0, 1/v0)-

Define H(y,t) := (H1(y,t),...,Hr(y,t)) and F(y,t) :== (Fi(y,t),...,Fp(y,t)). Then

(X xKP) N ((Ug NU,) x KP) = H(0)
and XN ((Up N Uy) x KP) = F~1(0) N H~1(0).
We denote the normal vector to the hypersurface {yo = constant} by
i = (1,0,...,0) € K" x KP.
Let us define p + 7 normal vectors to F~1(0) at (y,t) € XN ((Uy N U,) x KP), as follows:
Fori=1,...,p, define:

(8) ﬁ;(y, t) = VF’i(Z/? t) = (Van(ya t)v VpFi(y7 t)),
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where
an ;t =\ atv R 7t y F’L at = 7t7"'37 7t .
VB0 = (Gt o8] V)= (G G )
For j =1,...,r, define:
0H; 0H;
9 7i(y,t) = VHi(y,t) = | —2L(y,1),... I_(y,1),0,... .
0 5(000) = VH0:0) = (G0 o :0),0....0)

By Definition 3.4, f is not t-regular at zy € X* if and only if there exists a sequence
{(yk, tr) }ken € XN ((Up NU,) x KP) such that (yg,tx) — 2o and the tangent hyperplanes
to the fibres of g;x at (yx,x) tend to a hyperplane W such that its normal line has a direc-
tion of the form [0 : -+ : 0 : by : -+ : by] in PP~ More explicitly, there exists a sequence

{(kav wllm sy 'wpka(plk, ey Sork)}kGN - Kp+r+1 such that

p T
Jim. (ZO Vit (s ) + Zlgojmj (y- 1))
1= 1=

of the linear combination of normal vectors 7;, n7; has the direction
Aw =[0:0:---:0:by 10y e prie—t,
3.3. Rabier function and Rabier condition.

Definition 3.5 ([Ra, p. 651]). Given A € L(V,W). The Rabier function at A is defined as
follows:

(10) v(A) = inf{[[A"(p)[; o € W" and [|p]| = 1}.
For any vector w = (w1, ..., wy,) € K™, we denote the line matrix associated to w by [w], i.e.,
[wl=[ w1 ... wp |. Given A € L(K",KP), we denote by [A] the matrix of A with respect

to the canonical basis of K™ and K?. Thus, one has:

Lemma 3.6. Let V be a linear subspace of K. For any A € L(K",KP), if we set

(11) vi(Ayy) = imf{ || [u][A] + [w] [|;w € V-, u € KP and [Ju] =1},

then there are positive constants Cy and Co such that Civi1(Ay) < v(Ay) < Covi(Apy).
Proof. The proof follows from Lemma 2.1 and Definition 3.5. O

Now, let X C K™ be a smooth affine variety over K and let f : X — KP? be the restriction of
a polynomial mapping to X, where dim X > p. We have:

Definition 3.7 (|[Ra|). The set of asymptotic critical values of f is defined as follows:

(12) Kxo(f) = {t€KP|3{a;}jen C X, lim flay] = oo,
lim f(z;) =t and lim [lz;{|lv(Df(z;)r, x) = 0},
J—00 J—00 J

where v(—) is defined as in Definition 3.5.

We reformulate the above condition in a localized version, at some point at infinity zg € X*°,
as follows:

Definition 3.8 (Rabier condition). We say that zp € X* is an asymptotic critical point of
f if and only if there exists {z;}jeny C X ~ graphf such that lim; ,(z;, f(z;)) = 2o and
7(20) € Koo(f), where 7: P™ x KP — KP denotes the second projection.

We say that zg € X*° satisfies Rabier condition if zy is not an asymptotic critical point of f.
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REMARK 3.9. From Lemma 3.6, we obtain the same set of Definition 3.7 if we replace v by the
function vy defined in (11).

4. EQUIVALENCE OF REGULARITY CONDITIONS

The goal of this section is to prove an equivalence between t-regularity and Rabier condition.

Let X C K" be a smooth affine variety over K. We suppose that X is a global complete inter-
section. In other words, X = {z € K" | hy(x) = ha(z) = ... = hy(x) = 0} and rank Dh(z) =r
for any = € X, where h = (h1,...,h,) : K — K" and Dh(x) denotes the Jacobian matrix of h
at  (see Remark 4.2). With above definitions and statements, we have:

Theorem 4.1. Let f : X — KP be a non-constant polynomial mapping, with dim X > p. Let
zg € X°. Then f is t-regular at zo if and only if zo is not an asymptotic critical point of f.

Proof. We may assume (eventually after some linear change of coordinates) that
z0 € XN (U, x RP)
and that |z,| > |z;|, ¢ =1,...,n — 1, for & in some neighbourhood of z.
“=" Let zgp be an asymptotic critical point of f. By Definition 3.8 and Remark 3.9, this
means that there exist sequences {(¢x, pr) = ((V1ks- - Upk)s (P1ks - - - Pr)) foen C KPTT and

{zr == (@1ky. - Tnk) ey C X, where ||¢x| = 1 and limg— oo (¥, k) = (¥, ¢), such that
limy oo e =% = (Y1,...,%p) # (0,...,0), limg_yo0 (zk, f(zx)) = 20 and:

(13)
[zl Zi/hk (K +Z%k szk (m +Zz/}]k — 0.

Since for large enough k we have |z,x| > |zik|, ¢ = 1,...,n — 1, we may replace in (13) ||z]|
by |Znk| and then multiply the sums of (13) by 2.

In the notations of §3.2, by changing coordinates within UyNU,,, one has yo = 1/xy,, y; = ;/xn
and the relations:

3F(y7t>—zn§?<x>, 1<i<n-1,1<j<p,
(14) 3tz Sy t) = =015, 1<j,0<p,

S (yot) = —wn(@r1g8 (@) + ..+ an g (), 1<j<p

i (y,t) = 2o 52 (), 1<i<n—1,1<j<n
(15) %’};’;’(yﬁ)zo, 1<j<r 1<i<p,

S (y,t) = (2152 (2) + -+ Ta gt (x), 1<j<r

The condition (13) yields:

(16)
p T
OF; OH,
> Wina— Y ikt | (ks tr), Z%k +Z<ng (Yrstw) ||| — 0.
e W R Yn—1
We set Ay, = (0,wk, —Y1k, .., —Ypk), where wy, is the vector of equation (16). Let Wy be

the hyperplane defined by 7y, . Let 7; and 1, be the vectors defined in §3.2. Then, the vectors
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{flw, } are linear combinations of #; and ni; with coefficients {¢;x, ¢ 1}, and the hyperplanes
W), are tangent to the levels of the function g|x. Since we have supposed

kh*{[;o(wlk’ cee 7wpk) = (1/)1, cee 7wp) 7é (07 cee 70)7
it follows from definition of @iy, and equation (16) that:

lim Ay, =[0:0:...:0:%1 :... 9]

k—o0

Denote by W the hyperplane defined by [0:0:...:0: %1 ... :9¢p]. Then W = limy_, o0 Wy,
which implies that W belongs to C2° and consequently f is not t-regular at zo (see §3.2).
“<". Let zp € X*° be not t-regular. By Definition 3.4, this means that there exist a sequence of
points {(yx,tx)}xen € XN ((Up NU,) x KP) tending to zp, and a sequence of hyperplanes Wy,
tangent to the levels of g at (yy,tx), such that Wi — W € C2°.

Let 7i; and 71; be the vectors defined in §3.2. From §3.2, if f is not t-regular at zo then
there exist sequences {5 = (Y1k,. .., Ypk)then C ]E@’, {&r = (P1ky--- s Pri) hen € K" and
{/\k}keN C K such that T_iWk = )\kﬁo(yk,tk) -+ Zz wikﬁi(}"katk) -+ Zj géjkﬁij(yk,tk) and that

limy_y o0 T, = [O 0.0y 1/~Jp], where (1/31,...,1/;,)) # (0,...,0). By assumption,
the vector fiyy, has the following expression:

(a) In the first coordinate of 7y, one has: Ay + (Z Py, 2 g + Z ik 8y0> (Vi tr)-

P v
(b) In the I-th coordinate, with 2 <1 < n, one has: <Z:1 Vik ?)5: + '21 (,Zajk%glj> (Vies b)-
= j=

(¢) In the g-th coordinate, with n + 1 < ¢ < n + p, one has: —1/~1qk.

We rn:aiy take /\~k =7 zﬁik%(yk,tﬁ) — Z;Zl ¢jk%(yk,t;f). After, we divide out by
i = ||(¥1k, - -, ¥pi)|l- Then, we replace 1, and @ji by i == ti: and @ji = %, respec-
tively. This implies that ||[(¥1k, ..., ¥pi)|| = 1 and limg_ oo, = [0:...: 091 ... 4hy],

where (¢1,...,%,) # (0,...,0). Therefore,
(17) hm Z¢k “(Vk, tk) +Z<,0kaH (Vi tx) =0, forany 1 <1 <n—1.
k—o0 ! ’ J 8y ’

By using (14) and (15), this is equivalent to:

(18) hm Tk Zibm (7x) +Z<pjk =0,

for 1 <1< mn-—1,and one has |z,x| > ﬁ”xkﬂ for large enough k. Therefore, in order to get the

limit (13) it remains to prove that (18) is true for [ = n. The rest of our argument is devoted to
this proof.

From relations (14) and (15), we obtain z, gf’ () = — Z?;OI Yj ‘35%' (y,t) and
n—1
8H
33n Z y] y7

Therefore:
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n—1

. $ OF;
;Zygk%k (ko tr) = Y Vikbor 5 — o “ (Y tr)-

=1 =1

P
(19) Tk Z ?/Jm 5fz (k)

T n—1 r
Oh;
(20) InkE %‘kiaxz( E E yjk%k Yk,tk E sﬁzkyOk Yk7tk)
i=1 n j=1i=1

We will show that the following two terms tend to zero:

n—1 p n—1 r
(21) Zzyﬂcwzk Yk7tk +Zzygk<ﬂm katk) and
j=11i=1 j=1 =1
OH;
22 (2 7t 7 7t
(22) Zwkymc Yk k +;sﬂ Kok “ (k> t)-
First, we have:
n—1 p n—1 r
(23) ZZ ngk Ythk +Zzygk%k Yk,tk) <
=1 =1 Jj=1 =1
Tk P r
. (( Z%k ) (Vs te), Z%k Z%k ), te)) ||
" i=1

since by hypothesis |y;z| = |I]’“ | <1 for large enough k. Then we obtain from (17) that the
right hand side of (23) tends to zero as k — oo, which shows that (21) tends to zero.
To show that (22) tends to zero, let us assume that the following inequality holds for large

enough k > 1, the proof of which will be given below:

(24) Z wzkyc)k + Z %lcyok <

b T T p

OF; OH,;
szk Z‘P]k szk Z‘P]k szk 6'15 szk 8t
Then, by using (17), (24) and the equality > 5_, %k% = —y, for any 1 <[ < p (implied
by (14)), we have:
p T
OF; 0H;
ook — ok — =1.
;w Kok 5, +;<ng90k A < |9l

This implies limy_ o0 ||(3°0, dh‘ky%% + 3541 @jkyok%)(yk7 tx)|| = 0, which shows that (22)
tends to zero as k — oo.

We have shown that (21) and (22) tend to zero as k — co. From the equations (19) and (20),
we have that the sum (21) + (22) is equal to equation of (18) with [ = n. These imply that (18)
is also true for I = n. This completes our proof of relation (13) showing that zy is an asymptotic
critical point of f.
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Let us now give the proof of (24). Suppose not; this means that there exists 6 > 0 such that
for k> 1 we have:
(25)

oF, OH,
HZf—l Dirlor Gyt + D51 PikYok 2
H(Zp 1wzkayl +Z 1‘ij 61/1 DY 1¢zkayn 1 "’E 1903#;5% T wlka---7—¢pk)H

where, by relations (14), we have —iy, = >, P, 25 g for 1 <1 < p. The set:

> 9,

W ={((y,1),%,¢) € (UnNTp) x KP x KP x K") N (X x S7 ™" x K") | (25) holds for ((y,t),, )}

is a semi-algebraic set and we have ((yg,tx),¥r, ox) € W for k > 1. We observe that if
((y,t),v,0) € W then ((y,t),7¥,v¢) € W, for any v € K*. This last observation implies that
((y]wtk),’lb]ﬁ(ﬁk) € W, where wk = H(W:Z}W and (,ONIC = M#)H

Since limg_, o ¥ — ¥ # 0, one may suppose that limy_, (ﬁk, Or) — (1[), @), with (z/;, @) #£0.
Then limg o0 ((v&, tk), ¢~ka Pr) = (20,1;, ¢) and by the curve selection lemma [Mi] there exists

an analytic curve A = (¢,%,¢) : [0,e[— W such that A(]0,e[) € W and A(0) = (z0,%, ). We
denote

¢(s) = (Yo(s), y1(5), -+ Yn-1(5),1a(s), -, 1p(5)),  ¥(5) = (Yu(s),...,¥p(s)), and

Since (F, H)(¢(s)) =0, we have:

0= S 60) = 156 5T 60 + 3ot D 006 + 3 i) 2 E T (o1,

ayO i—1 atz
O(FH) _ (0F; 9F, OH, 5H,
where oo = (Byi""’ e By By ).

Multiplying by (1(s), ¢(s)) we obtain:

" 0H,
(26)  —wo(s ((Z% +;¢j8y0) (¢(3)))=
=, L OF;, <~ 0OH,
;yl(s)(<§¢i(s)ayl+;Jay)w(s)) ; sz % (s))-

Since ¢ is analytic, thus bounded at s = 0, by applying the Cauchy-Schwarz inequality one finds
a constant C' > 0 such that:

1) i) (Z uils)5

j=1

Y ayo) ()| <

C

— oy = on on Jay— ’

We have | := ordgy,(s) > O and ordgyo(s) = L+ 1 > 1 since y(0) = 0. Thus
’yo(S)(Zlewi(S)giﬁ ZJ 1¢J 30 )(¢(5)) < y6<5)( i:ﬂbi( )?)55 +ZJ 1% 3150 )(¢( ))‘
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This and (27) give:

()3 vils) 5, +Z%‘Z§ (6| <

= OF, OH, . 0H;
(;wia—yl+;%ay sz ; iy @ | ()

Yn—1

which contradicts our assumption that (H(s),9¥(s),o(s)) € W, for s €]0,e[. Therefore, we
conclude that (24) holds, which completes the proof of Theorem 4.1. [l

The above theorem extends for mappings defined on X the equivalence proved in [DRT,
Theorem 3.2]. It also extends an equivalence proved for p = 1 in [Pa2, ST).

REMARK 4.2. In Theorem 4.1 we suppose that X C K™ is a complete intersection. It is well
known that any manifold is a locally complete intersection (see e.g [GP, p. 18]). So, in the
general case of a smooth affine variety X, one may take a locally finite cover {U;} of K" such
that the manifold X; := X NU; is a complete intersection. Then we consider the normal vector
fields on each X; as in §3.2 and we use a partition of unity subordinate to the cover {U;} to
obtain normal vector fields defined on X. Then the proof of Theorem 4.1 in the general case is
the same as above.

5. t-REGULARITY AND JELONEK SET

In this section, we consider f: X — RP, where dim X = p. We prove that, in this case,
t-regularity is related with the Jelonek set Jy (|Jel]). We begin with:

Definition 5.1 ([Jel, Definition 3.3]). Let f: M — N be a continuous mapping, where M, N
are manifolds. We say that f is proper at a point ty € N if there exists an open neighbourhood
U of ty such that the restriction f;-1yy: f~Y(U) — U is a proper mapping. We denote by J;
the set of points at which f is not proper.

See for instance [Jel, Je2| for applications and related problems with Jy.

Definition 5.2. Let f : X — KP be the restriction of a polynomial mapping to a smooth variety
X, where dim X > p. We set

(28) NToo(f) :={to=71(20) € KP | 20 € X and 2z is not t-regular}.
When dim X = p, we have:

Proposition 5.3. Let X C R™ be a smooth affine variety over R. We suppose that X is a
global complete intersection. In other words X = {x € R™ | hy(x) = hao(z) = ... = hy(x) = 0}
and rank Dh(z) = r, for any v € X, where h = (hy,...,hy) : R — R" and Dh(x) denotes the
Jacobian matriz of h at x.

Let f = (f1,---,fp) : X — RP be the restriction of a polynomial mapping to X, where
dimX =n—r=p. Then NT(f) = Koo (f) = Js.

Proof. The equality NT oo(f) = Koo(f) follows directly from Theorem 4.1. Thus, we need only
show the equality K (f) = J;.

The inclusion K (f) C Jy follows directly from Definitions 3.7 and 5.1. On the other hand,
let ¢y € Jy. By the curve selection lemma [Mi|, there exists an analytic path

¢d=(0d1,...,¢n) :]0,¢[+ X CR"
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such that limg_o [|¢(s)|| = oo and lims_q f(H(s)) = to.

Consider
ofi afi Afi .
(29) 8];(@ = (aajjl(x),...,aai(x)), fori=1,...,p,
Oh; Oh; Oh;
(30) agc(): (8;101() ..,am](a:)>,f0rj—1,...,r.

Since n = h + r, there exist analytic curves A(s), @1 (s), . . ,gpp( $),01(5), ..., p(s), from ]0, €]
to R, such that (A(s), p1(8), ..., §p(8),01(5), ..., %r(s)) # (0,...,0), for any s €]0,¢[, and the
following equality holds:

1 k ~ afz
(31) A(8)(@1(8), -+, Pu(5)) = D @ils) +Z%
i=1

Let ¢(s) :== (@1(s), ..., Pp(s)). Let us assume that there exists 0 < €; < € such that @(s) # 0,
for any s €]0, 1], the proof of which will be given below.
We consider the curves A(s), ¢(s) := (¢1(s), ..., ¢p(s)) and ¥ (s)

= (¥ ( )y, ¥r(8)), where
) Bl = (5) = %)
)\(5) Te®) QD'L( ) Tes) t1=1,...,p, and d)j(s) = H@J(S)H7 7 1,.

Then [|¢(s)|| = 1 and we can rewrite equation (31) as follows:
3 fi - oh
(32) AENG1(): -5 00(6) = 3 ee) 3, 016)) + Do) 52 616)
j=1

By chain rule and from (32), we obtain the following equalities:

P

(33) Zw@%mam+2%@%mwm:
¢ 6fz d
(3 )+ 3t Shet ko)

1

30 (o).

Since lim,_,q f(¢(s)) = to and h( (s)) = 0, we have that ords (< f;(¢(s))) >0, fori=1,...,p,
and “£h;(¢(s)) =0, for j =1,...,r. These and (33) imply:

(34) o<md(<>(w<mﬂ)<oMJM@w@n%~

On the other hand, the equality (32) yields:

|

i=1

(35)  ordy (JA(s)[6(t)]*) = ords (Ifb( )l

From (34), we conclude that (35) is positive, which implies:

Therefore, since lims—o f(4(s)) = to, [lp(s)l| = 1, 227, w](s)a—;(qb(s)) € (Ty)X)*, we
conclude from (36), Definition 3.7 and Lemma 3.6 that tg € Koo (f).

(36) i (o)l |3

i=1
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Let us now show that there exists 0 < €; < e such that @(s) # 0, for any s €]0,€1[. Suppose
not; this means that there exists a sequence {sx}ren C]0, €[ such that limg o sy = 0 and
&(sk) = (0,...,0). This and (31) yield the following equality:

(37) A(sE)(D1(Sk)s -+ s Dn(sk)) = Zzﬁ](sk)%(qb(sk)), for any k € N.

We remember that (A(s), 31(s), ..., Pp(5),91(s), ..., Ur(s)) # (0,...,0), for any s €]0,¢.

Consequently, the condition on ¢ implies (A(sg), ¥1(sk),- - -, ¥r(sg)) # (0,...,0), for any k € N.

Moreover, since limg_,o s = 0, we have limg o [|@(sk)]| = oo and limg_,o f(d(sk)) = to.
From these conditions, equality (37) and curve selection lemma, we can obtain new analytic
curves A(s),1¥1(s),...,%-(s) and an analytic curve a = (aq,...,ay,) :]0,[— X C R™ such that

limg_,q [|Ja(s)]| = oo, lims—o f(a(s)) = to, (A(S),¥1(8),...,¥r(s)) # (0,...,0), for any s, and the
following equality holds:

(38) A(8) (a1 (8),...,an(s)) = Z%(s)%(qﬁ(s))

Since a(s) € X, we have hj(a(s)) = 0, which implies £h;(a(s)) =0, for j = 1,...,r. These
and chain rule give:

(39) 0= w5()hya(s)) = <Z 45() 2 (a(s)), jsa<s>> =326 (S 1e1R).
j=1 j=1

Since A and « are analytic curves, equality (39) gives A(s) = 0 or L |a(s)||> = 0. If A(s) =0
then, from (38) and statements on \,1,...,%,, we obtain that Z;Zl %(s)%@(s)) = 0,
with (¢1(s),...,¥r(s)) # (0,...,0). But this contradicts the hypothesis that X is a global
intersection. If “|la(s)[|> = 0 then [|a(s)||? is constant, which contradicts the assumption
lims_,q ||a(s)|| = oo. Therefore, we have shown by contradiction that the assertion “there exists
0 < €1 < e such that @(s) # 0, for any s €]0,€1[,” is true, which completes the proof of
Proposition 5.3. U

The above proposition extends for mappings defined on X the equality proved in [KOS,
Proposition 3.1].
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