CLASSIFICATIONS OF COMPLETELY INTEGRABLE IMPLICIT SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

MASATOMO TAKAHASHI
Dedicated to Professor Shyuichi Izumiya on the occasion of his 60th birthday

Abstract

An implicit second order ordinary differential equation is said to be completely integrable if there exists at least locally an immersive two-parameter family of geometric solutions on the equation hypersurface like as in the case of explicit equations. An implicit equation may have an immersive one-parameter family of geometric solutions (or, singular solutions) and a geometric solution (or, an isolated singular solution). In this paper, we give a classification of types of completely integrable implicit second order ordinary differential equations and give existence conditions for such families of solutions.

1. Introduction

An implicit second order ordinary differential equation is given by the form

$$
F(x, y, p, q)=0
$$

where F is a smooth function of the independent variable x, the function y, its first and second derivatives $p=d y / d x$ and $q=d^{2} y / d x^{2}$ respectively.

It is natural to consider $F=0$ as being defined on a subset in the space of 2-jets of smooth functions of one variable, $F: \mathcal{O} \rightarrow \mathbb{R}$ where \mathcal{O} is an open subset in $J^{2}(\mathbb{R}, \mathbb{R})$. Throughout this paper, we assume that 0 is a regular value of F. It follows that the set $F^{-1}(0)$ is a hypersurface in $J^{2}(\mathbb{R}, \mathbb{R})$. We call $F^{-1}(0)$ the equation hypersurface. Let (x, y, p, q) be a local coordinate on $J^{2}(\mathbb{R}, \mathbb{R})$ and $\xi \subset T J^{2}(\mathbb{R}, \mathbb{R})$ be the canonical contact system (the Engel structure) on $J^{2}(\mathbb{R}, \mathbb{R})$. It is well-known that locally the contact system is given by the vanishing of the two 1 -forms $\alpha_{1}=d y-p d x$ and $\alpha_{2}=d p-q d x$.

We now define the notion of solutions. A smooth solution (or a classical solution) of $F=0$ passing through a point z_{0} is a smooth function germ $y=f(x)$ at a point t_{0} such that

$$
\left(t_{0}, f\left(t_{0}\right), f^{\prime}\left(t_{0}\right), f^{\prime \prime}\left(t_{0}\right)\right)=z_{0} \quad \text { and } \quad F\left(x, f(x), f^{\prime}(x), f^{\prime \prime}(x)\right)=0
$$

In other words, there exists a smooth function germ $f:\left(\mathbb{R}, t_{0}\right) \rightarrow \mathbb{R}$ such that the image of the 2jet extension, $j^{2} f:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(J^{2}(\mathbb{R}, \mathbb{R}), z_{0}\right)$, is contained in the equation hypersurface. It is easy to see that the map $j^{2} f$ is an integral (Engel) immersion. More generally, a geometric solution of $F=0$ passing through a point z_{0} is an integral immersion $\gamma:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(J^{2}(\mathbb{R}, \mathbb{R}), z_{0}\right)$ such that the image of γ is contained in the equation hypersurface, namely, $\gamma^{\prime}(t) \neq 0, \gamma^{*} \alpha_{1}=\gamma^{*} \alpha_{2}=0$ and $F(\gamma(t))=0$ for each $t \in\left(\mathbb{R}, t_{0}\right)$.

[^0]In this paper, the following notions are basic (cf. [3, 6, 10, 11, 12, 20]):
A smooth complete solution on $F^{-1}(0)$ at z_{0} is defined by a two-parameter family of smooth function germs $y=f(t, r, s)$ such that

$$
F\left(t, f(t, r, s), \frac{\partial f}{\partial t}(t, r, s), \frac{\partial^{2} f}{\partial t^{2}}(t, r, s)\right)=0
$$

and the map germ $j_{*}^{2} f:\left(\mathbb{R} \times \mathbb{R}^{2},\left(t_{0}, r_{0}, s_{0}\right)\right) \rightarrow\left(F^{-1}(0), z_{0}\right)$ defined by

$$
j_{*}^{2} f(t, r, s)=\left(t, f(t, r, s), \frac{\partial f}{\partial t}(t, r, s), \frac{\partial^{2} f}{\partial t^{2}}(t, r, s)\right)
$$

is an immersion. It follows that the equation hypersurface is foliated locally by a two-parameter family of smooth solutions.

On the other hand, consider the corresponding definition for geometric solutions. We call $\Gamma:\left(\mathbb{R} \times \mathbb{R}^{2},\left(t_{0}, r_{0}, s_{0}\right)\right) \rightarrow\left(F^{-1}(0), z_{0}\right)$ a complete solution on $F^{-1}(0)$ at z_{0} if Γ is a twoparameter family of geometric solutions of $F=0$ and

$$
\operatorname{rank}\left(\begin{array}{llll}
\partial x / \partial t & \partial y / \partial t & \partial p / \partial t & \partial q / \partial t \\
\partial x / \partial r & \partial y / \partial r & \partial p / \partial r & \partial q / \partial r \\
\partial x / \partial s & \partial y / \partial s & \partial p / \partial s & \partial q / \partial s
\end{array}\right)\left(t_{0}, r_{0}, s_{0}\right)=3
$$

where $\Gamma(t, r, s)=(x(t, r, s), y(t, r, s), p(t, r, s), q(t, r, s))$. This condition means that Γ is an immersion germ, that is, the equation hypersurface is foliated locally by a two-parameter family of geometric solutions. We say that an equation $F=0$ is smoothly completely integrable (respectively, completely integrable) at z_{0} if there exists a smooth complete solution (respectively, a complete solution) on $F^{-1}(0)$ at z_{0}.

In the study of implicit ODEs from the view point of singularity theory, there is a lot of research. For example, generic singularities and properties were given in the case of first order in $[1,2,4,5,7,8,10,17,19]$, in the case of second order in $[14,15]$ and in the case of any order in [9] etc. This paper is focused on the theory of completely integrable implicit ODEs (cf. [18, 20, 21]). Especially, we shall classify types of completely integrable implicit second order ODEs. In $\S 2$, we give previous results for completely integrable implicit second order ODEs, for more detail see $[3,19,20]$. In $\S 3$, we divide types of completely integrable implicit second order ODEs into ten and give an existence condition for families of geometric solutions for each type. In $\S 4$, we give examples which are useful to understand the notions of complete solutions and results. Moreover, as an application of the results, we consider the confluent hypergeometric equations (the degenerate hypergeometric equations) from the view point of complete integrability (Example 4.5). In Appendix, we give a corresponding result for completely integrable implicit first order ODEs. These results had been essentially given by Shyuichi Izumiya ([11]).

All map germs and manifolds considered here are differential of class C^{∞}.

2. Basic notions and previous results

Let $F(x, y, p, q)=0$ be an implicit second order ODE. We denote the total derivative of F by $F_{X}=F_{x}+p F_{y}+q F_{p}$, where F_{x} (respectively, F_{y}, F_{p}, F_{q}) is the partial derivative with respect to x (respectively, y, p, q).

We say that $F=0$ is of (second order) Clairaut type (for short, type C) at z_{0} if there exists a function germ $\alpha:\left(F^{-1}(0), z_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\left.F_{X}\right|_{F^{-1}(0)}=\left.\alpha \cdot F_{q}\right|_{F^{-1}(0)}
$$

and of reduced type (for short, type R) at z_{0} if there exists a function germ $\beta:\left(F^{-1}(0), z_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\left.F_{q}\right|_{F^{-1}(0)}=\left.\beta \cdot F_{X}\right|_{F^{-1}(0)} .
$$

Note that we call $F=0$ is of reduced type as of first order type in [20]. Then we have shown the following result.
Theorem 2.1. ([20])
(1) $F=0$ is smoothly completely integrable at z_{0} if and only if $F=0$ is of type C at z_{0}.
(2) $F=0$ is completely integrable at z_{0} if and only if $F=0$ is either of type C or of type R at z_{0}.

We say that a geometric solution $\gamma:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(F^{-1}(0), z_{0}\right)$ is a singular solution of $F=0$ at z_{0} if for any representative $\widetilde{\gamma}: I \rightarrow F^{-1}(0)$ of γ and any open subinterval $(a, b) \subset I$ at $t_{0},\left.\widetilde{\gamma}\right|_{(a, b)}$ is never contained in a leaf of a complete solution (cf. [3, 11, 13]).

Around $z \in F^{-1}(0)$ such that the contact plane ξ_{z} intersects $T_{z} F^{-1}(0)$ transversally, it is easy to see that a complete solution on $F^{-1}(0)$ exists by integrating the line field $\xi \cap T F^{-1}(0)$. We call points where transversality fails contact singular points and denote by $\Sigma_{c}=\Sigma_{c}(F)$ the set of contact singular points. It is easy to check that the contact singular set is given by

$$
\Sigma_{c}=\left\{z \in J^{2}(\mathbb{R}, \mathbb{R}) \mid F(z)=0, F_{X}(z)=0, F_{q}(z)=0\right\}
$$

From the definition of singular solutions, it is easy to see that a geometric solution

$$
\gamma:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(F^{-1}(0), z_{0}\right)
$$

t is a singular solution only if it is contained in Σ_{c} (cf. [21]). We also consider the subset $\Delta=\Delta(F) \subset \Sigma_{c}$ which is defined to be the set of points $z \in \Sigma_{c}$ such that $T_{z} F^{-1}(0)$ coincides with the kernel of $\alpha_{1}(z)$. Explicitly, it is given by $\Delta=\left\{z \in \Sigma_{c} \mid F_{p}(z)=0\right\}$.

Now suppose that $F=0$ is completely integrable at z_{0} and Σ_{c} is a 2-dimensional manifold around z_{0}. We say that a map germ

$$
\Phi:\left(\mathbb{R} \times \mathbb{R},\left(t_{0}, a_{0}\right)\right) \rightarrow\left(\Sigma_{c}, z_{0}\right)
$$

is a complete solution on Σ_{c} at z_{0} if Φ is an immersion germ and $\Phi(\cdot, a)$ is a geometric solution for each $a \in\left(\mathbb{R}, a_{0}\right)$, that is, an immersive one-parameter family of geometric solutions of $F=0$. Moreover, we call Φ a complete singular solution on Σ_{c} at z_{0} if $\Phi(\cdot, a)$ is a singular solution for each $a \in\left(\mathbb{R}, a_{0}\right)$.

If ξ_{z} intersects $T_{z} \Sigma_{c}$ transversally in $T_{z} F^{-1}(0)$, then integrating the line field $\xi \cap T \Sigma_{c}$ yields a complete solution on Σ_{c}. We call a point where transversality does not hold a second order contact singular point and denote the set of such points by $\Sigma_{c c}=\Sigma_{c c}(F)$ (cf. [3, 20, 21]).

Conditions for existence of a complete solution on $F^{-1}(0)$ and a complete (singular) solution on Σ_{c} for implicit second order ODEs were given under a regularity condition.

Theorem 2.2. ([3]) Suppose that 0 is a regular value of $\left.F_{q}\right|_{F^{-1}(0)}$.
(1) $F=0$ is completely integrable at z_{0} if and only if $z_{0} \notin \Sigma_{c}$ or Σ_{c} is a 2-dimensional manifold around z_{0}.
(2) Let $F=0$ be completely integrable.
(i) The leaves of the complete solution on $F^{-1}(0)$ which meet Σ_{c} away from Δ intersect Σ_{c} transversally.
(ii) The leaves of the complete solution on $F^{-1}(0)$ which meet Δ are tangent to Σ_{c}.
(3) Let $F=0$ be completely integrable and $\Sigma_{c} \neq \emptyset$.
(i) There exists a complete singular solution on Σ_{c} at z_{0} if and only if $z_{0} \notin \Sigma_{c c}$ or $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}.
(ii) Suppose that $F=0$ admits a complete singular solution on Σ_{c}. Then each leaf of the complete singular solution on Σ_{c} intersects $\Sigma_{c c}$ transversally.
(4) Let $F=0$ be completely integrable at $z_{0} \in \Sigma_{c}$. If $z_{0} \in \Delta$, then Δ is a 1-dimensional manifold around z_{0}.

Theorem 2.3. ([20]) Suppose that 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$.
(1) $F=0$ is completely integrable at z_{0} if and only if $z_{0} \notin \Sigma_{c}$ or Σ_{c} is a 2-dimensional manifold around z_{0}.
(2) Let $F=0$ be completely integrable.
(i) The leaves of the complete solution on $F^{-1}(0)$ which meet Σ_{c} away from Δ intersect Σ_{c} transversally.
(ii) The leaves of the complete solution on $F^{-1}(0)$ which meet Δ are tangent to Σ_{c}.
(3) Let $F=0$ be completely integrable and $\Sigma_{c} \neq \emptyset$.
(i) There exists a complete solution on Σ_{c} at z_{0} if and only if $z_{0} \notin \Sigma_{c c}$ or $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}.
(ii) Suppose that $F=0$ admits a complete solution on Σ_{c}. Then each leaf of the complete solution on Σ_{c} intersects $\Sigma_{c c}$ transversally.

Remark 2.4. The important differences between Theorems 2.2 and 2.3 are (3) and (4). One is an existence condition for a complete singular solution on Σ_{c} and the other is only for a complete solution on Σ_{c}. Moreover, if $F=0$ is completely integrable at $z_{0} \in \Delta$ and 0 is a regular value of $\left.F_{q}\right|_{F^{-1}(0)}$, then Δ is a 1-dimensional manifold around z_{0}. However, Δ is not necessarily a 1-dimensional manifold around z_{0} when 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$, see Examples 4.1 and 4.4.

Proposition 2.5. ([18, 20]) Let $F=0$ be completely integrable at $z_{0} \in \Sigma_{c}$.
(1) If 0 is a regular value of $\left.F_{q}\right|_{F^{-1}(0)}$, then $F=0$ is of type C at z_{0}.
(2) If 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$, then $F=0$ is of type R at z_{0}.

Proposition 2.6. ([20]) Let $F=0$ be completely integrable at z_{0} and Σ_{c} be a 2-dimensional manifold around z_{0}. Then the second order singular set $\Sigma_{c c}$ is contained in Δ.

3. Completely integrable implicit second order ODEs

In this section, we analyse completely integrable implicit second order ODEs in detail. Let $F(x, y, p, q)=0$ be an implicit second order ODE at z_{0}. If $z_{0} \notin \Sigma_{c}$, then $F=0$ satisfies either $F_{q}\left(z_{0}\right) \neq 0$ or $F_{X}\left(z_{0}\right) \neq 0$.

First we assume that $F_{q}\left(z_{0}\right) \neq 0$. By the implicit function theorem, $F=0$ can be represented by an explicit equation at least locally. In this case, $F=0$ is of type C at z_{0} and we call this type C_{q}. Next we assume that $F_{X}\left(z_{0}\right) \neq 0$. Then $F=0$ is of type R at z_{0} and we call this type R_{X}. In both cases, there is a unique geometric solution passing through each point of $F^{-1}(0)$. It follows that there is a complete solution on $F^{-1}(0)$ and no singular solution.

By Theorem 2.1, a completely integrable ODE at z_{0} is either of type C or of type R at z_{0}. If $z_{0} \in \Sigma_{c}$, then $F=0$ satisfies either $F_{p}\left(z_{0}\right) \neq 0$ or $F_{y}\left(z_{0}\right) \neq 0$ by the assumption that $F=0$ is regular at z_{0} (see $\S 1$). The main purpose of this paper is to classify types of the completely integrable implicit second order ODEs at a point in detail, and to give existence conditions for a complete (singular) solution on Σ_{c} for each type respectively. It is concluded that there are ten kinds of types, see Table 1.

Conditions				Type	Name
$z_{0} \notin \Sigma_{c}$	$F_{q}\left(z_{0}\right) \neq 0$			C	C_{q}
	$F_{X}\left(z_{0}\right) \neq 0$			R	R_{X}
$z_{0} \in \Sigma_{c}$	$F_{p}\left(z_{0}\right) \neq 0$	z_{0} is a regular point of $\left.F_{q}\right\|_{F^{-1}(0)}$		C	$R C_{p}$
		z_{0} is a regular point of $\left.F_{X}\right\|_{F^{-1}(0)}$		R	$R R_{p}$
	$\begin{aligned} & F_{y}\left(z_{0}\right) \neq 0 \\ & F_{p}\left(z_{0}\right)=0 \end{aligned}$	z_{0} is a regular point of $\left.F_{q}\right\|_{F^{-1}(0)}$		C	$R C_{y}$
		z_{0} is a regular point of $\left.F_{X}\right\|_{F^{-1}(0)}$	$\Sigma_{c}=\Delta$	R	$R R_{y}^{1}$
			$\Sigma_{c} \supsetneq \Delta=\Sigma_{c c}$	R	$R R_{y}^{2}$
			$\Sigma_{c} \supsetneq \Delta \supsetneq \Sigma_{c c}$	R	$R R_{y}^{3}$
		z_{0} is a singular point of $\left.F_{q}\right\|_{F^{-1}(0)}$ and $\left.F_{X}\right\|_{F^{-1}(0)}$		C	$S C_{y}$
				R	$S R_{y}$

Table 1. A classification of types of completely integrable implicit second order ODEs at z_{0}.
3.1. On the types $R C_{p}$ and $R R_{p}$. If $z_{0} \in \Sigma_{c}$ and $F_{p}\left(z_{0}\right) \neq 0$, by the implicit function theorem, there exists a smooth function $g: V \rightarrow \mathbb{R}$, where V is an open set in \mathbb{R}^{3}, such that in a neighbourhood of $z_{0},(x, y, p, q) \in F^{-1}(0)$ if and only if $-p+g(x, y, q)=0$. Thus we may assume without loss of generality that $F(x, y, p, q)=-p+g(x, y, q)=0$. Under this notations, $F_{q}=g_{q}$ and $F_{X}=g_{x}+g \cdot g_{y}-q$. It follows that z_{0} is a regular point of either $\left.F_{q}\right|_{F^{-1}(0)}$ or $\left.F_{X}\right|_{F^{-1}(0)}$.

If z_{0} is a regular point of $\left.F_{q}\right|_{F^{-1}(0)}$, then $F=0$ is of type C at z_{0} and Σ_{c} is a 2-dimensional manifold around z_{0} by Proposition 2.5 and Theorem 2.2. We call this type $R C_{p}$. By $z_{0} \notin \Delta$ and Proposition 2.6, we have $z_{0} \notin \Sigma_{c c}$. Hence $F=0$ has a complete singular solution on Σ_{c} at z_{0}.

On the other hand, suppose that z_{0} is a regular point of $\left.F_{X}\right|_{F^{-1}(0)}$. By Proposition 2.5 and Theorem 2.3, $F=0$ is of type R at z_{0} and Σ_{c} is a 2 -dimensional manifold around z_{0}. We call this type $R R_{p}$. By $z_{0} \notin \Delta$ and Proposition 2.6, we have $z_{0} \notin \Sigma_{c c}$. Since the leaves of the complete solution which meet Σ_{c} away from Δ intersect Σ_{c} transversally, $F=0$ has a complete singular solution on Σ_{c} at z_{0}.
3.2. On the type $R C_{y}$. If $z_{0} \in \Sigma_{c}$ and $F_{y}\left(z_{0}\right) \neq 0$, again by the implicit function theorem, there exists a smooth function $f: U \rightarrow \mathbb{R}$, where U is an open set in \mathbb{R}^{3}, such that in a neighbourhood of $z_{0},(x, y, p, q) \in F^{-1}(0)$ if and only if $-y+f(x, p, q)=0$. Thus we may assume without loss of generality that $F(x, y, p, q)=-y+f(x, p, q)=0$. Define the diffeomorphism $\phi: U \rightarrow F^{-1}(0),(x, p, q) \mapsto(x, f(x, p, q), p, q)$ and $u_{0}=\phi^{-1}\left(z_{0}\right)$. Below, if $F_{y}\left(z_{0}\right) \neq 0$, we keep the notations of the above.

Suppose that z_{0} is a regular point of $\left.F_{q}\right|_{F^{-1}(0)}$. By Proposition 2.5 and Theorem 2.2, $F=0$ is of type C at z_{0} and Σ_{c} is a 2 -dimensional manifold around z_{0}. We call this type $R C_{y}$. Moreover, $F=0$ has a complete singular solution on Σ_{c} at z_{0} if and only if $z_{0} \notin \Sigma_{c c}$ or $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0} by Theorem 2.2.

Remark 3.1. If $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}, then $\Delta=\Sigma_{c c}$ and $\Sigma_{c c}$ is an isolated singular solution passing through z_{0} (see, [3, Proposition 1.4]). In this case, $F=0$ have a two-parameter family of geometric solutions, a one-parameter family of singular solutions and an isolated singular solution passing through $z_{0} \in \Sigma_{c c}$, see Example 4.2.
3.3. On the type $R R_{y}^{1}$. Let $z_{0} \in \Sigma_{c}$ and $F_{y}\left(z_{0}\right) \neq 0$. Suppose that z_{0} is a regular point of $\left.F_{X}\right|_{F^{-1}(0)}$. By Proposition 2.5 and Theorem $2.3, F=0$ is of type R at z_{0} and Σ_{c} is a 2 dimensional manifold around z_{0}. In this case, there are three types. First one is $\Sigma_{c}=\Delta$ around z_{0} (type $R R_{y}^{1}$), second is $\Sigma_{c} \supsetneq \Delta=\Sigma_{c c}$ around z_{0} (type $R R_{y}^{2}$), and the last is $\Sigma_{c} \supsetneq \Delta \supsetneq \Sigma_{c c}$ around z_{0} (type $R R_{y}^{3}$). We may assume that $F_{p}\left(z_{0}\right)=0$, namely, $z_{0} \in \Delta$.

Let $F=0$ be of the type $R R_{y}^{1}$ at z_{0}. By Theorem $2.3, F=0$ has a complete solution of Σ_{c} at z_{0} if and only if $z_{0} \notin \Sigma_{c c}$ or $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}. In this case, we have the following result, see Examples 4.1 and 4.4.
Theorem 3.2. Let $F=0$ be of type $R R_{y}^{1}$ at $z_{0} \in \Delta$. If $z_{0} \notin \Sigma_{c c}$, then there exists a unique geometric solution passing through z_{0}.

Proof. We denote $F(x, y, p, q)=-y+f(x, p, q)=0$. Since $F=0$ is of type R at z_{0}, there exists a smooth function germ $\alpha:\left(F^{-1}(0), z_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f_{q}=\alpha \cdot\left(f_{x}-p+q f_{p}\right) \tag{1}
\end{equation*}
$$

A complete solution, $\Gamma:\left(\mathbb{R} \times \mathbb{R}^{2}, 0\right) \rightarrow\left(F^{-1}(0), z_{0}\right)$, is given by integrating the vector field $\phi_{*} X$, where $X: U \rightarrow T U$ is given by

$$
X=(-\alpha,-\alpha \cdot q, 1)
$$

(cf. [3, Lemma 3.1]). By (1), we have
$\left(f_{x}-p+q f_{p}\right)_{q}=\left(\alpha_{x}+q \alpha_{p}\right) \cdot\left(f_{x}-p+q f_{p}\right)+\alpha \cdot\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)+f_{p}$.
It follows from the assumption $\Sigma_{c}=\Delta$ that

$$
\left.\left(f_{x}-p+q f_{p}\right)_{q}\right|_{\phi^{-1}\left(\Sigma_{c}\right)}=\left.\left.\alpha\right|_{\phi^{-1}\left(\Sigma_{c}\right)} \cdot\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)\right|_{\phi^{-1}\left(\Sigma_{c}\right)} .
$$

In this case, a complete solution on $\Sigma_{c}, \Phi:(\mathbb{R} \times \mathbb{R}, 0) \rightarrow\left(\Sigma_{c}, z_{0}\right)$, is given by integrating the vector field $\phi_{*} Y$, where $Y: \phi^{-1}\left(\Sigma_{c}\right) \rightarrow T \phi^{-1}\left(\Sigma_{c}\right)$ is given by

$$
Y=\left(-\left.\alpha\right|_{\phi^{-1}\left(\Sigma_{c}\right)},\left.(-\alpha \cdot q)\right|_{\phi^{-1}\left(\Sigma_{c}\right)}, 1\right)
$$

(cf. [20, Lemma 3.5]). It follows that $\left.\Gamma\right|_{\Gamma^{-1}\left(\Sigma_{c}\right)}=\Phi$ and hence there is a geometric solution on Σ_{c}. Let $\gamma:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(\Sigma_{c}, z_{0}\right) ; \gamma(t)=(x(t), y(t), p(t), q(t))$ be a geometric solution passing through z_{0}. Since $z_{0} \notin \Sigma_{c c}$, we have $x^{\prime}(t)+\alpha \cdot q^{\prime}(t)=0$ at t_{0}. It follows that we can reparametrise $\gamma(t)$ as $(x(t), y(t), p(t), t)$. By the analogous way in the proof of Lemma 3.2 in [21], we can show uniqueness of the geometric solution passing through z_{0}.

Proposition 3.3. Let $F=0$ be of type $R R_{y}^{1}$ at $z_{0} \in \Delta$. If $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}, then $\Sigma_{c c}$ is a singular solution passing through z_{0}.

Proof. It is easy to see that $\Sigma_{c c}$ is a geometric solution passing through z_{0}. By definition,

$$
\phi^{-1}\left(\Sigma_{c}\right)=\left(f_{x}-p+q f_{p}\right)^{-1}(0)
$$

and

$$
\phi^{-1}\left(\Sigma_{c c}\right)=\left(f_{x}-p+q f_{p}\right)^{-1}(0) \cap\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)^{-1}(0) .
$$

To show that $\Sigma_{c c}$ is not a leaf of the complete solution on $F^{-1}(0)$ (and on Σ_{c}) at z_{0}, it is sufficient to check that the scalar product of $\operatorname{grad}\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)$ and the vector field X is non-zero at u_{0}. Now

$$
\begin{align*}
& \left\langle\operatorname{grad}\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right),(-\alpha,-\alpha \cdot q, 1)\right\rangle \\
& =-\alpha \cdot\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)_{x}-\alpha \cdot q\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)_{p} \\
& \quad+\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)_{q} \tag{2}
\end{align*}
$$

It follows from (1) that (2) is equal to $2\left(f_{x p}+q f_{p p}\right)-1$ at u_{0}. By the assumption $\Sigma_{c}=\Delta$, there exists a smooth function germ β such that $f_{p}=\beta \cdot\left(f_{x}-p+q f_{p}\right)$ at least locally. Differentiating this equality with respect to x and p, we get

$$
f_{x p}=\beta_{x} \cdot\left(f_{x}-p+q f_{p}\right)+\beta \cdot\left(f_{x}-p+q f_{p}\right)_{x}
$$

and

$$
f_{p p}=\beta_{p} \cdot\left(f_{x}-p+q f_{p}\right)+\beta \cdot\left(f_{x}-p+q f_{p}\right)_{p}
$$

It follows that (2) is non-zero at u_{0}.
3.4. On the type $R R_{y}^{2}$. Suppose that $F=0$ is of type $R R_{y}^{2}$ at z_{0}. See Example 4.2. Then $\Sigma_{c} \supsetneq \Delta=\Sigma_{c c}$ around z_{0}. By Theorem 2.3, $F=0$ has a complete solution on Σ_{c} at z_{0} if and only if $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}. In this case, we have the following result.

Theorem 3.4. Let $F=0$ be of type $R R_{y}^{2}$ at $z_{0} \in \Delta . F=0$ has a complete singular solution on Σ_{c} at z_{0} if and only if $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}.

Proof. By Theorem 2.3, each leaf of the complete solution on $F^{-1}(0)$ which meet Σ_{c} away from $\Sigma_{c c}$ intersect Σ_{c} transversally, and each leaf of the complete solution on Σ_{c} intersects $\Sigma_{c c}$ transversally. Therefore the complete solution on Σ_{c} is the complete singular solution on Σ_{c}.

By the definition of $\Sigma_{c c}$,

$$
\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}=0,\left(f_{x}-p+q f_{p}\right)_{q}=0
$$

at $z_{0} \in \Sigma_{c c}$. Since z_{0} is a regular point of $\left.F_{X}\right|_{F^{-1}(0)},\left(f_{x}-p+q f_{p}\right)_{p} \neq 0$ at z_{0}. The equation $F=0$ satisfies either
(i) $\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)_{q} \neq 0$
or

$$
\text { (ii) }\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)_{q}=0
$$

at z_{0}. It follows that z_{0} is a regular point of $\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}$, or of $\left(f_{x}-p+q f_{p}\right)_{q}$.
Proposition 3.5. Let $F=0$ be of type $R R_{y}^{2}$ at $z_{0} \in \Delta$. Suppose that $\Sigma_{c c}$ is a 1-dimensional manifold around z_{0}.
(1) If $F=0$ satisfies the condition (i), then each leaf of the complete solution on $F^{-1}(0)$ is intersects $\Sigma_{c c}$ transversally and hence $\Sigma_{c c}$ is a singular solution passing through z_{0}.
(2) If $F=0$ satisfy the conditions (ii) and $\left.F_{p q}\right|_{\Sigma_{c c}} \equiv 0$ around z_{0}, then each leaf of the complete solution on $F^{-1}(0)$ is tangent to $\Sigma_{c c}$. If $\gamma(t)=(x(t), y(t), p(t), q(t)) \in \Sigma_{c c}$ is a geometric solution, $\gamma(t)$ is represented by the form (a, b, c, t), where $a, b, c \in \mathbb{R}$. Moreover, $\gamma(t)$ is a leaf of the complete solution on $F^{-1}(0)$.

Proof. (1) Since $\phi^{-1}\left(\Sigma_{c c}\right)=\left(f_{x}-p+q f_{p}\right)^{-1}(0) \cap\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)^{-1}(0)$, it is sufficient to check that the scalar product of $\operatorname{grad}\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right)$ and the vector field X is non-zero at u_{0}. By the same calculations in Proposition 3.3,

$$
\left\langle\operatorname{grad}\left(\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p}\right),(-\alpha,-\alpha \cdot q, 1)\right\rangle=2\left(f_{x p}+q f_{p p}\right)-1
$$

at u_{0}. The condition (i) guarantees that $2\left(f_{x p}+q f_{p p}\right)-1 \neq 0$ at u_{0}. Therefore each leaf of the complete solution on $F^{-1}(0)$ intersects $\Sigma_{c c}$ transversally and hence $\Sigma_{c c}$ is a singular solution passing through z_{0}.
(2) Since $\phi^{-1}\left(\Sigma_{c c}\right)=\left(f_{x}-p+q f_{p}\right)^{-1}(0) \cap\left(\left(f_{x}-p+q f_{p}\right)_{q}\right)^{-1}(0)$, it is sufficient to check that the scalar product of $\operatorname{grad}\left(f_{x}-p+q f_{p}\right)_{q}$ and the vector field X is zero. By the direct calculations, the consequence follows from the condition $F_{p q} \mid \Sigma_{c c} \equiv 0$ around z_{0}.

Let $\gamma(t)=(x(t), y(t), p(t), q(t)) \in \Sigma_{c c}$ be a geometric solution passing through z_{0}. By differentiating $f_{p}(x(t), p(t), q(t))=0$ with respect to t, we get

$$
\left(f_{x p}+q f_{p p}\right)(x(t), p(t), q(t)) \cdot x^{\prime}(t)+f_{p q}(x(t), p(t), q(t)) \cdot q^{\prime}(t)=0
$$

By the condition (ii), we have $f_{x p}+q f_{p p}=1 / 2$ at u_{0} and hence $x^{\prime}(t) \equiv 0$. This means that $x(t)$ is constant on $\Sigma_{c c}$ around z_{0}. Differentiating (1) with respect to p, we have

$$
f_{p q}=\alpha_{p} \cdot\left(f_{x}-p+q f_{p}\right)+\alpha \cdot\left(f_{x}-p+q f_{p}\right)_{p}
$$

It follows that $\left.\alpha\right|_{\Sigma_{c c}} \equiv 0$ around z_{0}. By the form of the vector field X (see, in the proof of Theorem 3.2), $\left.\Gamma\right|_{\Gamma^{-1}\left(\Sigma_{c c}\right)}=\gamma$.
3.5. On the type $R R_{y}^{3}$. Suppose that $F=0$ is of type $R R_{y}^{3}$ at z_{0}. See Example 4.3. Then $\Sigma_{c} \supsetneq \Delta \supsetneq \Sigma_{c c}$ around z_{0}. In this subsection, assume that Δ is a 1 -dimensional manifold around z_{0} and $z_{0} \notin \Sigma_{c c}$, since we consider complete solutions. By Theorem 2.3, $F=0$ has a complete solution on Σ_{c} at z_{0}. If Δ is not a geometric solution passing through z_{0}, the complete solution on Σ_{c} is the complete singular solution on Σ_{c}. On the other hand, if Δ is a geometric solution passing through z_{0}, we have the following result.
Proposition 3.6. Let $F=0$ be of type $R R_{y}^{3}$ at $z_{0} \in \Delta \backslash \Sigma_{c c}$. If $\gamma(t)=(x(t), y(t), p(t), q(t)) \in \Delta$ is a geometric solution passing through z_{0}, then $\gamma(t)$ is represented by the form (a, b, c, t) where $a, b, c \in \mathbb{R}$. Moreover, $\gamma(t)$ is a leaf of both complete solutions on $F^{-1}(0)$ and Σ_{c}.
Proof. Since $z_{0} \notin \Sigma_{c c}$, we have $\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p} \neq 0$ at u_{0}. Differentiating equalities $\left(f_{x}-p+q f_{p}\right)(x(t), p(t), q(t))=0$ and $f_{p}(x(t), p(t), q(t))=0$ with respect to t, we have

$$
\left(\begin{array}{cc}
\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p} & \left(f_{x}-p+q f_{p}\right)_{q} \\
f_{x p}+q f_{p p} & f_{p q}
\end{array}\right)\binom{x^{\prime}(t)}{q^{\prime}(t)}=\binom{0}{0}
$$

Since $\gamma(t)$ is a geometric solution, $\left(x^{\prime}(t), q^{\prime}(t)\right) \neq(0,0)$ on Δ. Thus

$$
\operatorname{det}\left(\begin{array}{cc}
\left(f_{x}-p+q f_{p}\right)_{x}+q\left(f_{x}-p+q f_{p}\right)_{p} & \left(f_{x}-p+q f_{p}\right)_{q} \\
f_{x p}+q f_{p p} & f_{p q}
\end{array}\right)=0
$$

on Δ. It follows that $\left.\alpha\right|_{\Delta} \equiv 0$ and hence $x^{\prime}(t) \equiv 0$. This means that $x(t)$ is constant on Δ around z_{0}. By the forms of the vector field X for a complete solution on $F^{-1}(0)$ and of the vector field Y for a complete solution on Σ_{c} (which appeared in the proof of Theorem 3.2), it follows that $\left.\Gamma\right|_{\Gamma^{-1}(\Delta)}=\left.\Phi\right|_{\Phi^{-1}(\Delta)}=\gamma$.
3.6. On the type $S C_{y}$. Suppose that $F=0$ is of type C at $z_{0} \in \Sigma_{c}$ and z_{0} is a singular point of $\left.F_{q}\right|_{F^{-1}(0)}$ and $\left.F_{X}\right|_{F^{-1}(0)}$. We call this type $S C_{y}$. See Example 4.4.

Proposition 3.7. Let $F=0$ be of type $S C_{y}$ at z_{0}. If Σ_{c} is a 2-dimensional manifold around z_{0}, then $z_{0} \notin \Sigma_{c c}$.
Proof. Let $F(x, y, p, q)=-y+f(x, p, q)=0$. Since $F=0$ is of type C at z_{0}, there is a function germ $\alpha:\left(F^{-1}(0), z_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f_{x}-p+q f_{p}=\alpha \cdot f_{q} \tag{3}
\end{equation*}
$$

By differentiating (3) with respect to p, we have $f_{x p}-1+q f_{p p}=\alpha_{p} \cdot f_{q}+\alpha \cdot f_{p q}$. Hence $f_{x p}+q f_{p p}=1$ at u_{0}. By a direct calculation,
(4) $\left(f_{x}-p+q f_{p}\right)_{x q}+q\left(f_{x}-p+q f_{p}\right)_{p q}=\left(f_{x q}+q f_{p q}\right)_{x}+q\left(f_{x q}+q f_{p q}\right)_{p}+f_{x p}+q f_{p p}$.

On the other hand, by (3),

$$
\begin{align*}
& \left(f_{x}-p+q f_{p}\right)_{x q}+q\left(f_{x}-p+q f_{p}\right)_{p q} \\
& =\left(\alpha_{x q}+q \alpha_{p q}\right) \cdot f_{q}+\alpha_{q} \cdot\left(f_{q x}+q f_{p q}\right)+\left(\alpha_{x}+q \alpha_{p}\right) \cdot f_{q q}+\alpha \cdot\left(f_{x q q}+q f_{p q q}\right) \tag{5}
\end{align*}
$$

By definition, $\phi^{-1}\left(\Sigma_{c}\right)=f_{q}^{-1}(0)$. Since Σ_{c} is a 2 -dimensional manifold around z_{0}, there is a regular function germ $g:\left(U, u_{0}\right) \rightarrow \mathbb{R}$ and a function germ $k:\left(U, u_{0}\right) \rightarrow(\mathbb{R}, 0)$ such that
$\phi^{-1}\left(\Sigma_{c}\right)=g^{-1}(0)$ and $f_{q}=k \cdot g$ at least locally. By a direct calculation, the right hand of (4) is given by
$\left(\left(k_{x}+q k_{p}\right)_{x}+q\left(k_{x}+k_{p}\right)_{p}\right) \cdot g+2\left(k_{x}+q k_{p}\right) \cdot\left(g_{x}+q g_{p}\right)+k \cdot\left(\left(g_{x}+q g_{p}\right)_{x}+q\left(g_{x}+q g_{p}\right)_{p}\right)+f_{x p}+q f_{p p}$.
Also the right hand of (5) is given by

$$
\begin{aligned}
& \left(\alpha_{x q}+q \alpha_{p q}\right) \cdot k \cdot g+\alpha_{q} \cdot\left(\left(k_{x}+q k_{p}\right) \cdot g+k \cdot\left(g_{x}+q g_{p}\right)\right)+\left(\alpha_{x}+q \alpha_{p}\right) \cdot\left(k_{q} \cdot g+k \cdot g_{q}\right) \\
& \quad+\alpha \cdot\left(\left(k_{x q}+q k_{p q}\right) \cdot g+k_{q} \cdot\left(g_{x}+q g_{p}\right)+\left(k_{x}+q k_{p}\right) \cdot g_{q}+k \cdot\left(g_{x q}+q g_{p q}\right)\right) .
\end{aligned}
$$

If $z_{0} \in \Sigma_{c c}$, then $g=g_{x}+q g_{p}=g_{q}=0$ at u_{0}. This contradicts the fact that $(4)=(5)$, namely $1=0$ at u_{0}.

Under the assumption of Proposition 3.7, it follows from $z_{0} \notin \Sigma_{c c}$ that there is a complete solution on Σ_{c} at z_{0}. According to Theorem 3.11 in below, a geometric solution passing through z_{0} on Σ_{c} is a singular solution for type C. Hence the complete solution on Σ_{c} is the complete singular solution on Σ_{c} at z_{0}.
3.7. On the type $S R_{y}$. Suppose that $F=0$ is of type R at $z_{0} \in \Sigma_{c}$ and z_{0} is a singular point of $\left.F_{q}\right|_{F^{-1}(0)}$ and $\left.F_{X}\right|_{F^{-1}(0)}$. We call this type $S R_{y}$. We can also prove the following result by using the same arguments in the proof of Proposition 3.7, so we omit the proof.

Proposition 3.8. Let $F=0$ be of type $S R_{y}$ at z_{0}. If Σ_{c} is a 2-dimensional manifold around z_{0}, then $z_{0} \notin \Sigma_{c c}$.

Moreover, we have the following result.
Proposition 3.9. Let $F=0$ be of type $S R_{y}$ and not of type C at z_{0}. If Σ_{c} is a 2-dimensional manifold around z_{0}, then Δ is a 1-dimensional manifold around z_{0}. Moreover, Δ is not a geometric solution passing through z_{0}.
Proof. By (1), $f_{q}=\alpha \cdot\left(f_{x}-p+q f_{p}\right)$ with $\alpha\left(z_{0}\right)=0$. Since $\phi^{-1}\left(\Sigma_{c}\right)=\left(f_{x}-p+q f_{p}\right)^{-1}(0)$ is a 2-dimensional manifold around z_{0}, there exist a regular function germ $g:\left(U, u_{0}\right) \rightarrow(\mathbb{R}, 0)$ and a function germ $k:\left(U, u_{0}\right) \rightarrow(\mathbb{R}, 0)$ such that $f_{x}-p+q f_{p}=k \cdot g$ and $k^{-1}(0) \subset g^{-1}(0)$ at least locally. By a direct calculation, we have

$$
\left(f_{x}-p+q f_{p}\right)_{x q}+q\left(f_{x}-p+q f_{p}\right)_{p q}=1
$$

at u_{0}. On the other hand,

$$
\left(f_{x}-p+q f_{p}\right)_{x q}+q\left(f_{x}-p+q f_{p}\right)_{p q}=k_{q} \cdot\left(g_{x}+q g_{p}\right)+\left(k_{x}+q k_{p}\right) \cdot g_{q}
$$

at u_{0}. Hence $k_{q} \cdot\left(g_{x}+q g_{p}\right)+\left(k_{x}+q k_{p}\right) \cdot g_{q}=1$ at u_{0}. If $g_{q}\left(u_{0}\right)=0$, then $k_{q}\left(u_{0}\right) \neq 0$. It follows that k is represented by $\lambda(x, p, q) \cdot(q-\mu(x, p))$ at least locally, where λ and μ are function germs with $\lambda\left(u_{0}\right) \neq 0$. Since $k^{-1}(0) \subset g^{-1}(0), g(x, p, \mu(x, p))=0$. By differentiating this equality with respect to x and p, we have

$$
g_{x}(x, p, \mu(x, p))+\mu_{x}(x, p) g_{q}(x, p, \mu(x, p))=0
$$

and

$$
g_{p}(x, p, \mu(x, p))+\mu_{p}(x, p) g_{q}(x, p, \mu(x, p))=0
$$

This contradicts the fact that g is regular at u_{0}. Therefore we have $g_{q} \neq 0$ at u_{0}.
By the definition of $\Delta, \phi^{-1}(\Delta)=g^{-1}(0) \cap f_{p}^{-1}(0)$. To show that Δ is a 1 -dimensional manifold around z_{0}, it is sufficient to show that the matrix

$$
A=\left(\begin{array}{ccc}
g_{x} & g_{p} & g_{q} \\
f_{x p} & f_{p p} & f_{p q}
\end{array}\right)
$$

has rank 2 at u_{0}. Since $f_{x}-p+q f_{p}$ and f_{q} are singular at $u_{0}, f_{x p}+q f_{p p}=1$ and $f_{p q}=0$ at u_{0}. Therefore $\operatorname{rank} A=2$ at u_{0}.

Next suppose that $\gamma:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(\Delta, z_{0}\right) ; \gamma(t)=(x(t), y(t), p(t), q(t))$ is a geometric solution passing through z_{0}. By differentiating equalities $g(x(t), p(t), q(t))=0$ and $f_{p}(x(t), p(t), q(t))=0$ with respect to t, we have

$$
\left(\begin{array}{cc}
\left(g_{x}+q g_{p}\right)(x(t), p(t), q(t)) & g_{q}(x(t), p(t), q(t)) \\
\left(f_{x p}+q f_{p p}\right)(x(t), p(t), q(t)) & f_{p q}(x(t), p(t), q(t))
\end{array}\right)\binom{x^{\prime}(t)}{q^{\prime}(t)}=\binom{0}{0} .
$$

Since the determinant of the matrix

$$
\left(\begin{array}{cc}
g_{x}+q g_{p} & g_{q} \\
f_{x p}+q f_{p p} & f_{p q}
\end{array}\right)
$$

does not vanish at $t_{0},\left(x^{\prime}(t), q^{\prime}(t)\right)=(0,0)$ at t_{0}. This contradicts the fact that $\gamma(t)$ is a geometric solution passing through z_{0}.

As a conclusion, if $F=0$ is of type $S R_{y}$, not of type C at z_{0} and Σ_{c} is a 2-dimensional manifold around z_{0}, then there is a complete singular solution on Σ_{c} at z_{0} by Propositions 3.8 and 3.9.

Finally, in this section, we give an important difference between type C and type R.
Lemma 3.10. Let $F=0$ be of type $R C_{y}$ at z_{0}. If $z_{0} \in \Delta \backslash \Sigma_{c c}$, then Δ is not a geometric solution passing through z_{0}.

Proof. By Theorem 2.2, Δ is a 1-dimensional manifold around z_{0}. Suppose that

$$
\gamma:\left(\mathbb{R}, t_{0}\right) \rightarrow\left(\Delta, z_{0}\right) ; \gamma(t)=(x(t), y(t), p(t), q(t))
$$

is a geometric solution passing through z_{0}. Differentiating

$$
f_{p}(x(t), p(t), q(t))=0 \quad \text { and } \quad f_{q}(x(t), p(t), q(t))=0
$$

with respect to t, we have

$$
\left(\begin{array}{cc}
\left(f_{x p}+q f_{p p}\right)(x(t), p(t), q(t)) & f_{p q}(x(t), p(t), q(t)) \\
\left(f_{x q}+q f_{p q}\right)(x(t), p(t), q(t)) & f_{q q}(x(t), p(t), q(t))
\end{array}\right)\binom{x^{\prime}(t)}{q^{\prime}(t)}=\binom{0}{0} .
$$

Moreover, differentiating (3) with respect to p and $q, f_{x p}-1+q f_{p p}=\alpha_{p} \cdot f_{q}+\alpha \cdot f_{p q}$ and $f_{x q}+f_{p}+q f_{p q}=\alpha_{q} \cdot f_{q}+\alpha \cdot f_{q q}$ respectively. Then

$$
\operatorname{det}\left(\begin{array}{cc}
\left(f_{x p}+q f_{p p}\right)(x(t), p(t), q(t)) & f_{p q}(x(t), p(t), q(t)) \\
\left(f_{x q}+q f_{p q}\right)(x(t), p(t), q(t)) & f_{q q}(x(t), p(t), q(t))
\end{array}\right)=f_{q q}(x(t), p(t), q(t))
$$

The condition $z_{0} \notin \Sigma_{c c}$ guarantees that $f_{q q} \neq 0$ at u_{0}. It follows that $\left(x^{\prime}(t), q^{\prime}(t)\right)=(0,0)$ at t_{0}. This contradicts the fact that $\gamma(t)$ is a geometric solution passing through z_{0}.

Theorem 3.11. Let $F=0$ be of type C at z_{0}. If $\gamma(t)=(x(t), y(t), p(t), q(t)) \in \Sigma_{c}$ is a geometric solution passing through z_{0}, then $\gamma(t)$ is the singular solution.

Proof. First we assume that z_{0} is a regular point of $\left.F_{q}\right|_{F^{-1}(0)}$. If $z_{0} \notin \Delta$, then $\gamma(t)$ is a singular solution passing through z_{0} and hence we may regard that $\gamma(t) \subset \Delta$ by Theorem 2.2. Also if $z_{0} \notin \Sigma_{c c}$, then $\gamma(t)$ is not a geometric solution passing through z_{0} by Lemma 3.10. We may assume that $\gamma(t) \subset \Sigma_{c c}$. Then we can conclude that $\gamma(t)$ is a singular solution passing through z_{0}, see Remark 3.1.

Next we assume that z_{0} is a singular point of $\left.F_{q}\right|_{F^{-1}(0)}$. Also we may regard that $\gamma(t) \subset \Delta$. By differentiating $f_{p}(x(t), p(t), q(t))=0$ with respect to t,

$$
\left(f_{x p}+q f_{p p}\right)(x(t), p(t), q(t)) \cdot x^{\prime}(t)+f_{p q}(x(t), p(t), q(t)) \cdot q^{\prime}(t)=0
$$

Since $f_{x p}-1+q f_{p p}=\alpha_{p} \cdot f_{q}+\alpha_{p} \cdot f_{p q}$, we have

$$
\left(1+\alpha \cdot f_{p q}(x(t), p(t), q(t))\right) \cdot x^{\prime}(t)+f_{p q}(x(t), p(t), q(t)) \cdot q^{\prime}(t)=0
$$

By the assumption, $f_{p q}\left(u_{0}\right)=0$. Hence $x^{\prime}\left(t_{0}\right)=0$ and $q^{\prime}\left(t_{0}\right) \neq 0$. It follows from the form of smooth complete solution, $\gamma(t)$ is the singular solution passing through z_{0}. This completes the proof of Theorem 3.11.

As a consequence, if $F=0$ is of type C and there exists a geometric solution on the contact singular set, then uniqueness for geometric solutions does not hold.

4. Examples

We give examples of completely integrable second order ODEs. For more examples, refer to [3, Examples 5.1 and 5.2] etc.

Example 4.1. Let $F(x, y, p, q)=y+(1 / 2) p^{2} q^{2 n+1}=0$, where n is a natural number. In this case, $F_{X}=p\left(1+q^{2 n+2}\right)$ and $F_{q}=(1 / 2)(2 n+1) p^{2} q^{2 n}$. Hence $F=0$ is of type R at $z_{0} \in F^{-1}(0)$. Since 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$, and

$$
\Sigma_{c}=\{(x, y, p, q) \mid y=p=0\}=\Delta, \quad \Sigma_{c c}=\{(x, y, p, q) \mid y=p=q=0\}
$$

$F=0$ is of type $R R_{y}^{1}$ at $z_{0} \in \Sigma_{c}$. By Theorems $2.3,3.2$ and Proposition 3.3, there exist a complete solutions on $F^{-1}(0)$ and Σ_{c}, and a singular solution. Indeed, the complete solutions $\Gamma: \mathbb{R} \times \mathbb{R}^{2} \rightarrow F^{-1}(0), \Phi: \mathbb{R} \times \mathbb{R} \rightarrow \Sigma_{c}$ and the singular solution $\gamma: \mathbb{R} \rightarrow \Sigma_{c c}$ are given by

$$
\begin{aligned}
& \Gamma(t, r, s)=\left(-\frac{2 n+1}{2} r \int\left(1+t^{2 n+2}\right)^{-\frac{6 n+5}{4(n+1)}} t^{2 n} d t+s\right. \\
&\left.-\frac{1}{2} r^{2} t^{2 n+1}\left(1+t^{2 n+2}\right)^{-\frac{2 n+1}{2(n+1)}}, r\left(1+t^{2 n+2}\right)^{-\frac{2 n+1}{4(n+1)}}, t\right)
\end{aligned}
$$

$\Phi(t, a)=(a, 0,0, t)$ and $\gamma(t)=(t, 0,0,0)$. We can observe that $\left.\Gamma\right|_{\Gamma^{-1}\left(\Sigma_{c}\right)}=\Phi$.
Example 4.2. Let $F(x, y, p, q)=-y+p q^{n}-(n /(2 n+1)) q^{2 n+1}=0$, where n is a natural number. In this case, $F_{X}=-p+q^{n+1}$ and $F_{q}=-n q^{n-1}\left(-p+q^{n+1}\right)$. Hence $F=0$ is of type C and of type R for $n=1$, and of type R for $n \geq 2$ at $z_{0} \in F^{-1}(0)$. Since 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$ and

$$
\Sigma_{c}=\left\{(x, y, p, q) \left\lvert\, y=\frac{n+1}{2 n+1} q^{2 n+1}\right., p=q^{n+1}\right\}, \Delta=\{(x, y, p, q) \mid y=p=q=0\}=\Sigma_{c c}
$$

$F=0$ is of type $R R_{y}^{2}$ at $z_{0} \in \Delta$. Note that $F=0$ is also of type $R C_{y}$ at z_{0} if $n=1$. By Theorems 2.3 and 3.4 , there exist a complete solution on $F^{-1}(0)$ and a complete singular solution on Σ_{c}. Moreover, $F=0$ satisfies the condition (i) of Proposition 3.5 in $\S 3.4, \Sigma_{c c}$ is an isolated singular solution. Indeed, the complete solution on $F^{-1}(0)$, the complete singular solution on Σ_{c} and the isolated singular solution are given by

$$
\begin{aligned}
& \Gamma(t, r, s)=\left(t^{n}+r, \frac{n^{2}}{(n+1)(2 n+1)} t^{2 n+1}+s t^{n}, \frac{n}{n+1} t^{n+1}+s, t\right) \\
& \Phi(t, a)=\left(\frac{n+1}{n} t^{n}+a, \frac{n+1}{2 n+1} t^{2 n+1}, t^{n+1}, t\right) \text { and } \gamma(t)=(t, 0,0,0)
\end{aligned}
$$

If $n=1$, the complete solution on $F^{-1}(0)$ can be parametrised by

$$
\Gamma(t, r, s)=\left(t, \frac{1}{6} t^{3}+\frac{1}{2} r t^{2}+s t+r s-\frac{1}{3} r^{3}, \frac{1}{2} t^{2}+r t+s, t+r\right)
$$

Example 4.3. Let

$$
F(x, y, p, q)=-y+(1 / 2) x^{2}-(1 / n) p q^{n}+(1 / n) x q^{n}+\left(1 / 2 n^{2}\right) q^{2 n}-(1 / n(2 n+1)) q^{2 n+1}=0
$$

where n is a natural number. In this case, $F_{X}=x+(1 / n) q^{n}-p-(1 / n) q^{n+1}$ and $F_{q}=q^{n-1} F_{X}$. Since 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$ and

$$
\begin{gathered}
\Sigma_{c}=\left\{(x, y, p, q) \left\lvert\, y=\frac{1}{2} x^{2}-\frac{1}{2 n^{2}} q^{n+1}+\frac{n+1}{n^{2}(2 n+1)} q^{2 n+1}\right.\right\}, \\
\Delta=\left\{(x, y, p, q) \left\lvert\, y=\frac{1}{2} x^{2}\right., p=x, q=0\right\}, \Sigma_{c c}=\emptyset
\end{gathered}
$$

$F=0$ is of type $R R_{y}^{3}$ at $z_{0} \in \Delta$. Note that if $n=1$, then $F=0$ is also of type $R C_{y}$ at z_{0}. By Theorem 2.3, there exist complete solutions on $F^{-1}(0)$ and Σ_{c}. Since Δ is not a geometric solution, the complete solution on Σ_{c} is the complete singular solution on Σ_{c}. The complete solution on $F^{-1}(0)$ and the complete singular solution on Σ_{c} at 0 are given by

$$
\begin{gathered}
\Gamma(t, r, s)=\left(-\frac{1}{n} t^{n}+r, \frac{1}{(n+1)(2 n+1)} t^{2 n+1}-\frac{1}{n} s t^{n}+\frac{1}{2} r^{2},-\frac{1}{n+1} t^{n+1}+s, t\right), \\
\Phi(t, a)=\left(x(t, a), \frac{1}{2} x(t, a)^{2}-\frac{1}{2 n^{2}} t^{n+1}+\frac{n+1}{n^{2}(2 n+1)} t^{2 n+1}, x(t, a)+\frac{1}{n} t^{n}-\frac{1}{n} t^{n+1}, t\right),
\end{gathered}
$$

where

$$
x(t, a)=-\frac{1}{n}\left(\frac{n+1}{n} t^{n}+\frac{1}{n-1} t^{n-1}+\cdots+\frac{1}{2} t^{2}+t+\log |t-1|\right)+a .
$$

Example 4.4. Let $F(x, y, p, q)=-y+x p-(1 / 2) x^{2} q+x^{n}=0$, where n is a natural number. In this case, $F_{X}=n x^{n-1}$ and $F_{q}=-(1 / 2) x^{2}$. Hence $F=0$ is of type R for $n=1$ and 2 at $z_{0} \in F^{-1}(0)$. Also $F=0$ is both types of C and R for $n=3$, and of type C for $n \geq 4$ at z_{0}.

First suppose that $n=1$. Since $F_{X}=1$, we have $\Sigma_{c}=\emptyset$. It follows that $F=0$ is of type R_{X} at z_{0}. The complete solution on $F^{-1}(0)$ at 0 is given by

$$
\Gamma(t, r, s)=\left(\frac{2 r}{1-r t}, \frac{4 r}{1-r t} \log |1-r t|+\frac{4 r+2 r s}{1-r t}+\frac{2 r}{(1-r t)^{2}}, 2 \log |1-r t|+\frac{2}{1-r t}+s, t\right)
$$

Second suppose that $n=2$. Since 0 is a regular value of $\left.F_{X}\right|_{F^{-1}(0)}$ and

$$
\Sigma_{c}=\{(x, y, p, q) \mid x=y=0\}=\Delta, \Sigma_{c c}=\emptyset
$$

$F=0$ is of type $R R_{y}^{1}$ at $z_{0} \in \Delta$. The complete solutions on $F^{-1}(0)$ and Σ_{c} are given by

$$
\Gamma(t, r, s)=\left(r e^{\frac{t}{4}}, \frac{r^{2}}{2} t e^{\frac{t}{2}}-3 r^{2} e^{\frac{t}{2}}+r s e^{\frac{t}{4}}, r t e^{\frac{t}{4}}-4 r e^{\frac{t}{4}}+s, t\right)
$$

$\Phi(t, a)=(0,0, a, t)$. We can observe that $\left.\Gamma\right|_{\Gamma^{-1}\left(\Sigma_{c}\right)}=\Phi$.
Finally suppose that $n \geq 3$. Since 0 is a singular value of $\left.F_{q}\right|_{F^{-1}(0)}$ and $\left.F_{X}\right|_{F^{-1}(0)}, F=0$ is of type $S C_{y}$ at $z_{0} \in \Delta$. We have

$$
\Sigma_{c}=\{(x, y, p, q) \mid x=y=0\}=\Delta, \Sigma_{c c}=\emptyset
$$

The complete solution on $F^{-1}(0)$ and the complete singular solution on Σ_{c} are given by

$$
\Gamma(t, r, s)=\left(t, \frac{2}{(n-2)(n-1)} t^{n}+\frac{1}{2} r t^{2}+s t, \frac{2 n}{(n-2)(n-1)} t^{n-1}+r t+s, \frac{2 n}{n-2} t^{n-2}+r\right)
$$

$\Phi(t, a)=(0,0, a, t)$. Note that if $n=3$, then $F=0$ is also of type $S R_{y}$ at z_{0}.
Example 4.5. Let $F(x, y, p, q)=x q+(a-x) p-b y=0$ be the confluent hypergeometric equations (the degenerate hypergeometric equations), where $a, b \in \mathbb{R}$, see in [16]. The equation have the confluent hypergeometric function as a solution. However, we can decide by using the results whether the equation have a complete solution or not. This is a new viewpoint for the equation as far as we know.

Since we consider the regular equation, we may assume that $b \neq 0$. By

$$
\begin{gathered}
F_{X}=q(1+a-x)-p(1+b) \quad \text { and } \quad F_{q}=x \\
\Sigma_{c}=\{(x, y, p, q) \mid x=0, a p-b y=0, q(1+a)-p(1+b)=0\}
\end{gathered}
$$

If $z_{0} \notin \Sigma_{c}$, then there exist a complete solution at z_{0} and also a unique geometric solution passing through z_{0}. If $z_{0} \in \Sigma_{c}$ and $a=-1, b=-1$, then $F_{X}=q \cdot F_{q}, \Sigma_{c}$ is a 2-dimensional manifold and $\Sigma_{c c}=\emptyset$. It follows that $F=0$ is of type $R C_{y}$ at z_{0}. By Theorem 2.2, there exist a complete solution on $F^{-1}(0)$ and a complete singular solution on Σ_{c}. The complete solution on $F^{-1}(0)$ and the complete singular solution on Σ_{c} are given by

$$
\Gamma(t, r, s)=\left(t, r e^{t}+(1+t) s, r e^{t}+s, r e^{t}\right), \Phi(t, a)=(0, a, a, t)
$$

If $z_{0} \in \Sigma_{c}$ and $a=-1, b \neq-1$ (respectively, $a \neq-1$), then Σ_{c} is a 1-dimensional manifold. Hence $F=0$ is not completely integrable at z_{0}.

Appendix A. Completely integrable implicit first order ODEs

In this appendix, we quickly review known results for the theory of completely integrable implicit first order ODEs

$$
F(x, y, p)=0, p=d y / d x
$$

For more detail, see $[10,11,12,13,19]$. Assume that 0 is a regular value of F. We say that $F=0$ is completely integrable at a point if there exists an immersive one-parameter family of geometric solutions on $F^{-1}(0)$ at the point. The contact singular set $\Sigma_{c}=\Sigma_{c}(F)$ is given by

$$
\Sigma_{c}=\left\{z \in J^{1}(\mathbb{R}, \mathbb{R}) \mid F(z)=0, F_{X}(z)=0, F_{p}(z)=0\right\}
$$

Here $F_{X}=F_{x}+p F_{y}$. We say that an equation $F=0$ is of (first order) Clairaut type (for short, type C) at z_{0} if there exists a function germ $\alpha:\left(F^{-1}(0), z_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\left.F_{X}\right|_{F^{-1}(0)}=\left.\alpha \cdot F_{p}\right|_{F^{-1}(0)}
$$

and of reduced type (for short, type R) at z_{0} if there exists a function germ $\beta:\left(F^{-1}(0), z_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\left.F_{p}\right|_{F^{-1}(0)}=\left.\beta \cdot F_{X}\right|_{F^{-1}(0)}
$$

In [11], it has been shown the following results.
Theorem A.1. ([11]) Let $F(x, y, p)=0$ be an implicit first order $O D E$ at z_{0}. The following are equivalent:
(1) $F=0$ is completely integrable at z_{0}.
(2) $F=0$ is either of type C or of type R at z_{0}.
(3) $z_{0} \notin \Sigma_{c}$ or Σ_{c} is a 1-dimensional manifold around z_{0}.

Moreover, if Σ_{c} is a 1-dimensional manifold around z_{0}, then Σ_{c} is a singular solution of $F=0$ passing through z_{0}.

Now suppose that $z_{0} \in \Sigma_{c}$. Since $F=0$ is regular, $F_{y}\left(z_{0}\right) \neq 0$. By the implicit function theorem, there exists a smooth function $f: U \rightarrow \mathbb{R}$, where U is an open set in \mathbb{R}^{2}, such that in a neighbourhood of $z_{0},(x, y, p) \in F^{-1}(0)$ if and only if $-y+f(x, p)=0$. Thus we may assume without loss of generality that $F(x, y, p)=-y+f(x, p)=0$. It follows that z_{0} is a regular point of either $\left.F_{p}\right|_{F^{-1}(0)}$ or $\left.F_{X}\right|_{F^{-1}(0)}$. Therefore, completely integrable implicit first order ODEs have four kinds of types (cf. [19]), see Table 2.

Conditions		Type	Name	
$\neq \Sigma_{c}$	$F_{p}\left(z_{0}\right) \neq 0$		C	C_{p}
	$F_{X}\left(z_{0}\right) \neq 0$		R	R_{X}
$z_{0} \in \Sigma_{c}$	$F_{y}\left(z_{0}\right) \neq 0$	z_{0} is a regular point of $\left.F_{p}\right\|_{F^{-1}(0)}$	C	$R C_{y}$
		z_{0} is a regular point of $\left.F_{X}\right\|_{F^{-1}(0)}$	R	$R R_{y}$

Table 2. A classification of types of completely integrable implicit first order ODEs at z_{0}.

References

[1] V. I. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Second edition, Springer-Verlag, New York (1988).
[2] V. I. Arnol'd, Ordinary differential equations, Springer Textbook, Springer-Verlag, Belin (1992). DOI: 10.14492/hokmj/1350659159
[3] M. Bhupal, On singular solutions of implicit second-order ordinary differential equations, Hokkaido Math. J. 32 (2003), 623-641.
[4] J. W. Bruce and F. Tari, On binary differential equations, Nonlinearity. 8 (1995), 255-271. DOI: 10.1088/0951-7715/8/2/008
[5] J. W. Bruce and F. Tari, Implicit differential equations from the singularity theory viewpoint, Banach Center Publ., 33 (1996), 23-38.
[6] R. Courant and D. Hilbert, Methods of Mathematical Physics II, Wiley, New York (1962).
[7] L. Dara, Singularites generiques des equations differentielles multiformes, Bol. Soc. Brasil. Mat. 6 (1975), 95-128. DOI: 10.1007/BF02584779
[8] A. A. Davydov, The normal form of a differential equation, that is not solved with respect to the derivative, in the neighborhood of its singular point, Funktsional. Anal. i Prilozhen. 19 (1985), 1-10.
[9] M. Fukuda and T. Fukuda, Singular solutions of ordinary differential equations, Yokohama Math. J. 25 (1977), 41-58.
[10] A. Hayakawa, G. Ishikawa, S. Izumiya and K. Yamaguchi, Classification of generic integral diagrams and first order ordinary differential equations, Int. J. Math. 5 (1994), 447-489. DOI: 10.1142/S0129167X94000255
[11] S. Izumiya, Singular solutions of first-order differential equations, Bull. London Math. Soc. 26 (1994), 69-74. DOI: 10.1112/blms/26.1.69
[12] S. Izumiya, On Clairaut-type equations, Publ. Math. Debrecen. 45 (1995), 159-166.
[13] S. Izumiya and J. Yu, How to define singular solutions, Kodai Math. J. 16 (1993), 227-234. DOI: $10.2996 / \mathrm{kmj} / 1138039786$
[14] M. Lemasurier, Singularities of second-order implicit differential equations: a geometrical approach, J. Dyn. Control Syst. 7 (2001), 277-298. DOI: 10.1023/A:1013007405832
[15] Y. Machida and M. Takahashi, Classifications of implicit second-order ordinary differential equations of Clairaut type, Proc. Roy. Soc. Edinburgh Sect. A. 138 (2008), 821-842. DOI: 10.1017/S0308210506000977
[16] A. D. Polyanin and V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations, Second edition, Chapman \& Hall/CRC, Boca Raton, FL (2003).
[17] A. O. Remizov, The multidimensional Poincare construction and singularities of lifted fields for implicit differential equations, Sovrem. Mat. Fundam. Napravl. 19 (2006), 131-170.
[18] M. Takahashi, On implicit second order ordinary differential equations: Completely integrable and Clairaut type, J. Dyn. Control Syst. 13 (2007), 273-288. DOI: 10.1007/s10883-007-9013-9
[19] M. Takahashi, On completely integrable first order ordinary differential equations, Proceedings of the Australian-Japanese Workshop on Real and Complex singularities. (2007), 388-418.
[20] M. Takahashi, On complete solutions and complete singular solutions of second order ordinary differential equations, Colloquium Math. 109 (2007), 271-285. DOI: 10.4064/cm109-2-9
[21] M. Takahashi, Completely integrable implicit ordinary differential equations, Yokohama Math. J. 58 (2012), 17-29.

Muroran Institute of Technology, Muroran 050-8585, JAPAN
E-mail address: masatomo@mmm.muroran-it.ac.jp

[^0]: The author would like to thank Professor Shyuichi Izumiya for his constant encouragements, and also thank the referee for helpful comments to improve the original manuscript. This work was supported by a Grant-in-Aid for Young Scientists (B) No. 23740041.

 2010 Mathematics Subject classification. Primary 34A26; Secondary 34A09, 34C05, 65L05
 Key Words and Phrases. implicit ordinary differential equation, geometric solution, singular solution, complete solution, Clairaut type, reduced type.

