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Abstract. An implicit second order ordinary differential equation is said to be completely

integrable if there exists at least locally an immersive two-parameter family of geometric

solutions on the equation hypersurface like as in the case of explicit equations. An implicit
equation may have an immersive one-parameter family of geometric solutions (or, singular

solutions) and a geometric solution (or, an isolated singular solution). In this paper, we give

a classification of types of completely integrable implicit second order ordinary differential
equations and give existence conditions for such families of solutions.

1. Introduction

An implicit second order ordinary differential equation is given by the form

F (x, y, p, q) = 0,

where F is a smooth function of the independent variable x, the function y, its first and second
derivatives p = dy/dx and q = d2y/dx2 respectively.

It is natural to consider F = 0 as being defined on a subset in the space of 2-jets of smooth
functions of one variable, F : O → R where O is an open subset in J2(R,R). Throughout this
paper, we assume that 0 is a regular value of F . It follows that the set F−1(0) is a hypersurface
in J2(R,R). We call F−1(0) the equation hypersurface. Let (x, y, p, q) be a local coordinate on
J2(R,R) and ξ ⊂ TJ2(R,R) be the canonical contact system (the Engel structure) on J2(R,R).
It is well-known that locally the contact system is given by the vanishing of the two 1-forms
α1 = dy − pdx and α2 = dp− qdx.

We now define the notion of solutions. A smooth solution (or a classical solution) of F = 0
passing through a point z0 is a smooth function germ y = f(x) at a point t0 such that

(t0, f(t0), f ′(t0), f ′′(t0)) = z0 and F (x, f(x), f ′(x), f ′′(x)) = 0.

In other words, there exists a smooth function germ f : (R, t0)→ R such that the image of the 2-
jet extension, j2f : (R, t0)→ (J2(R,R), z0), is contained in the equation hypersurface. It is easy
to see that the map j2f is an integral (Engel) immersion. More generally, a geometric solution of
F = 0 passing through a point z0 is an integral immersion γ : (R, t0)→ (J2(R,R), z0) such that
the image of γ is contained in the equation hypersurface, namely, γ′(t) 6= 0, γ∗α1 = γ∗α2 = 0
and F (γ(t)) = 0 for each t ∈ (R, t0).
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In this paper, the following notions are basic (cf. [3, 6, 10, 11, 12, 20]):

A smooth complete solution on F−1(0) at z0 is defined by a two-parameter family of smooth
function germs y = f(t, r, s) such that

F

(
t, f(t, r, s),

∂f

∂t
(t, r, s),

∂2f

∂t2
(t, r, s)

)
= 0

and the map germ j2
∗f : (R× R2, (t0, r0, s0))→ (F−1(0), z0) defined by

j2
∗f(t, r, s) =

(
t, f(t, r, s),

∂f

∂t
(t, r, s),

∂2f

∂t2
(t, r, s)

)
is an immersion. It follows that the equation hypersurface is foliated locally by a two-parameter
family of smooth solutions.

On the other hand, consider the corresponding definition for geometric solutions. We call
Γ : (R × R2, (t0, r0, s0)) → (F−1(0), z0) a complete solution on F−1(0) at z0 if Γ is a two-
parameter family of geometric solutions of F = 0 and

rank

∂x/∂t ∂y/∂t ∂p/∂t ∂q/∂t
∂x/∂r ∂y/∂r ∂p/∂r ∂q/∂r
∂x/∂s ∂y/∂s ∂p/∂s ∂q/∂s

 (t0, r0, s0) = 3,

where Γ(t, r, s) = (x(t, r, s), y(t, r, s), p(t, r, s), q(t, r, s)). This condition means that Γ is an im-
mersion germ, that is, the equation hypersurface is foliated locally by a two-parameter family
of geometric solutions. We say that an equation F = 0 is smoothly completely integrable (re-
spectively, completely integrable) at z0 if there exists a smooth complete solution (respectively,
a complete solution) on F−1(0) at z0.

In the study of implicit ODEs from the view point of singularity theory, there is a lot of
research. For example, generic singularities and properties were given in the case of first order
in [1, 2, 4, 5, 7, 8, 10, 17, 19], in the case of second order in [14, 15] and in the case of any
order in [9] etc. This paper is focused on the theory of completely integrable implicit ODEs
(cf. [18, 20, 21]). Especially, we shall classify types of completely integrable implicit second
order ODEs. In §2, we give previous results for completely integrable implicit second order
ODEs, for more detail see [3, 19, 20]. In §3, we divide types of completely integrable implicit
second order ODEs into ten and give an existence condition for families of geometric solutions
for each type. In §4, we give examples which are useful to understand the notions of complete
solutions and results. Moreover, as an application of the results, we consider the confluent
hypergeometric equations (the degenerate hypergeometric equations) from the view point of
complete integrability (Example 4.5). In Appendix, we give a corresponding result for completely
integrable implicit first order ODEs. These results had been essentially given by Shyuichi Izumiya
([11]).

All map germs and manifolds considered here are differential of class C∞.

2. Basic notions and previous results

Let F (x, y, p, q) = 0 be an implicit second order ODE. We denote the total derivative of F by
FX = Fx + pFy + qFp, where Fx (respectively, Fy, Fp, Fq) is the partial derivative with respect
to x (respectively, y, p, q).

We say that F = 0 is of (second order) Clairaut type (for short, type C) at z0 if there exists
a function germ α : (F−1(0), z0)→ R such that

FX |F−1(0) = α · Fq|F−1(0),
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and of reduced type (for short, type R) at z0 if there exists a function germ β : (F−1(0), z0)→ R
such that

Fq|F−1(0) = β · FX |F−1(0).

Note that we call F = 0 is of reduced type as of first order type in [20]. Then we have shown
the following result.

Theorem 2.1. ([20])
(1) F = 0 is smoothly completely integrable at z0 if and only if F = 0 is of type C at z0.
(2) F = 0 is completely integrable at z0 if and only if F = 0 is either of type C or of type R

at z0.

We say that a geometric solution γ : (R, t0)→ (F−1(0), z0) is a singular solution of F = 0 at
z0 if for any representative γ̃ : I → F−1(0) of γ and any open subinterval (a, b) ⊂ I at t0, γ̃|(a,b)
is never contained in a leaf of a complete solution (cf. [3, 11, 13]).

Around z ∈ F−1(0) such that the contact plane ξz intersects TzF
−1(0) transversally, it is

easy to see that a complete solution on F−1(0) exists by integrating the line field ξ ∩ TF−1(0).
We call points where transversality fails contact singular points and denote by Σc = Σc(F ) the
set of contact singular points. It is easy to check that the contact singular set is given by

Σc = {z ∈ J2(R,R)| F (z) = 0, FX(z) = 0, Fq(z) = 0}.
From the definition of singular solutions, it is easy to see that a geometric solution

γ : (R, t0)→ (F−1(0), z0)

t is a singular solution only if it is contained in Σc (cf. [21]). We also consider the subset
∆ = ∆(F ) ⊂ Σc which is defined to be the set of points z ∈ Σc such that TzF

−1(0) coincides
with the kernel of α1(z). Explicitly, it is given by ∆ = {z ∈ Σc| Fp(z) = 0}.

Now suppose that F = 0 is completely integrable at z0 and Σc is a 2-dimensional manifold
around z0. We say that a map germ

Φ : (R× R, (t0, a0))→ (Σc, z0)

is a complete solution on Σc at z0 if Φ is an immersion germ and Φ(·, a) is a geometric solution
for each a ∈ (R, a0), that is, an immersive one-parameter family of geometric solutions of F = 0.
Moreover, we call Φ a complete singular solution on Σc at z0 if Φ(·, a) is a singular solution for
each a ∈ (R, a0).

If ξz intersects TzΣc transversally in TzF
−1(0), then integrating the line field ξ ∩ TΣc yields

a complete solution on Σc. We call a point where transversality does not hold a second order
contact singular point and denote the set of such points by Σcc = Σcc(F ) (cf. [3, 20, 21]).

Conditions for existence of a complete solution on F−1(0) and a complete (singular) solution
on Σc for implicit second order ODEs were given under a regularity condition.

Theorem 2.2. ([3]) Suppose that 0 is a regular value of Fq|F−1(0).
(1) F = 0 is completely integrable at z0 if and only if z0 6∈ Σc or Σc is a 2-dimensional manifold
around z0.
(2) Let F = 0 be completely integrable.

(i) The leaves of the complete solution on F−1(0) which meet Σc away from ∆ intersect Σc
transversally.

(ii) The leaves of the complete solution on F−1(0) which meet ∆ are tangent to Σc.
(3) Let F = 0 be completely integrable and Σc 6= ∅.

(i) There exists a complete singular solution on Σc at z0 if and only if z0 6∈ Σcc or Σcc is a
1-dimensional manifold around z0.
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(ii) Suppose that F = 0 admits a complete singular solution on Σc. Then each leaf of the
complete singular solution on Σc intersects Σcc transversally.
(4) Let F = 0 be completely integrable at z0 ∈ Σc. If z0 ∈ ∆, then ∆ is a 1-dimensional manifold
around z0.

Theorem 2.3. ([20]) Suppose that 0 is a regular value of FX |F−1(0).
(1) F = 0 is completely integrable at z0 if and only if z0 6∈ Σc or Σc is a 2-dimensional manifold
around z0.
(2) Let F = 0 be completely integrable.

(i) The leaves of the complete solution on F−1(0) which meet Σc away from ∆ intersect Σc
transversally.

(ii) The leaves of the complete solution on F−1(0) which meet ∆ are tangent to Σc.
(3) Let F = 0 be completely integrable and Σc 6= ∅.

(i) There exists a complete solution on Σc at z0 if and only if z0 6∈ Σcc or Σcc is a 1-dimensional
manifold around z0.

(ii) Suppose that F = 0 admits a complete solution on Σc. Then each leaf of the complete
solution on Σc intersects Σcc transversally.

Remark 2.4. The important differences between Theorems 2.2 and 2.3 are (3) and (4). One is
an existence condition for a complete singular solution on Σc and the other is only for a complete
solution on Σc. Moreover, if F = 0 is completely integrable at z0 ∈ ∆ and 0 is a regular value
of Fq|F−1(0), then ∆ is a 1-dimensional manifold around z0. However, ∆ is not necessarily a
1-dimensional manifold around z0 when 0 is a regular value of FX |F−1(0), see Examples 4.1 and
4.4.

Proposition 2.5. ([18, 20]) Let F = 0 be completely integrable at z0 ∈ Σc.
(1) If 0 is a regular value of Fq|F−1(0), then F = 0 is of type C at z0.
(2) If 0 is a regular value of FX |F−1(0), then F = 0 is of type R at z0.

Proposition 2.6. ([20]) Let F = 0 be completely integrable at z0 and Σc be a 2-dimensional
manifold around z0. Then the second order singular set Σcc is contained in ∆.

3. Completely integrable implicit second order ODEs

In this section, we analyse completely integrable implicit second order ODEs in detail. Let
F (x, y, p, q) = 0 be an implicit second order ODE at z0. If z0 /∈ Σc, then F = 0 satisfies either
Fq(z0) 6= 0 or FX(z0) 6= 0.

First we assume that Fq(z0) 6= 0. By the implicit function theorem, F = 0 can be represented
by an explicit equation at least locally. In this case, F = 0 is of type C at z0 and we call this
type Cq. Next we assume that FX(z0) 6= 0. Then F = 0 is of type R at z0 and we call this type
RX . In both cases, there is a unique geometric solution passing through each point of F−1(0).
It follows that there is a complete solution on F−1(0) and no singular solution.

By Theorem 2.1, a completely integrable ODE at z0 is either of type C or of type R at z0.
If z0 ∈ Σc, then F = 0 satisfies either Fp(z0) 6= 0 or Fy(z0) 6= 0 by the assumption that F = 0
is regular at z0 (see §1). The main purpose of this paper is to classify types of the completely
integrable implicit second order ODEs at a point in detail, and to give existence conditions for
a complete (singular) solution on Σc for each type respectively. It is concluded that there are
ten kinds of types, see Table 1.
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Conditions Type Name
z0 6∈ Σc Fq(z0) 6= 0 C Cq

FX(z0) 6= 0 R RX
z0 ∈ Σc Fp(z0) 6= 0 z0 is a regular point of Fq|F−1(0) C RCp

z0 is a regular point of FX |F−1(0) R RRp
Fy(z0) 6= 0, z0 is a regular point of Fq|F−1(0) C RCy
Fp(z0) = 0 z0 is a regular point of FX |F−1(0) Σc = ∆ R RR1

y

Σc ) ∆ = Σcc R RR2
y

Σc ) ∆ ) Σcc R RR3
y

z0 is a singular point of Fq|F−1(0) C SCy
and FX |F−1(0) R SRy

Table 1. A classification of types of completely integrable implicit second order ODEs at z0.

3.1. On the types RCp and RRp. If z0 ∈ Σc and Fp(z0) 6= 0, by the implicit function
theorem, there exists a smooth function g : V → R, where V is an open set in R3, such that in a
neighbourhood of z0, (x, y, p, q) ∈ F−1(0) if and only if −p+g(x, y, q) = 0. Thus we may assume
without loss of generality that F (x, y, p, q) = −p+ g(x, y, q) = 0. Under this notations, Fq = gq
and FX = gx + g · gy − q. It follows that z0 is a regular point of either Fq|F−1(0) or FX |F−1(0).

If z0 is a regular point of Fq|F−1(0), then F = 0 is of type C at z0 and Σc is a 2-dimensional
manifold around z0 by Proposition 2.5 and Theorem 2.2. We call this type RCp. By z0 6∈ ∆ and
Proposition 2.6, we have z0 6∈ Σcc. Hence F = 0 has a complete singular solution on Σc at z0.

On the other hand, suppose that z0 is a regular point of FX |F−1(0). By Proposition 2.5 and
Theorem 2.3, F = 0 is of type R at z0 and Σc is a 2-dimensional manifold around z0. We call this
type RRp. By z0 6∈ ∆ and Proposition 2.6, we have z0 6∈ Σcc. Since the leaves of the complete
solution which meet Σc away from ∆ intersect Σc transversally, F = 0 has a complete singular
solution on Σc at z0.

3.2. On the type RCy. If z0 ∈ Σc and Fy(z0) 6= 0, again by the implicit function theorem,
there exists a smooth function f : U → R, where U is an open set in R3, such that in a
neighbourhood of z0, (x, y, p, q) ∈ F−1(0) if and only if −y+f(x, p, q) = 0. Thus we may assume
without loss of generality that F (x, y, p, q) = −y + f(x, p, q) = 0. Define the diffeomorphism
φ : U → F−1(0), (x, p, q) 7→ (x, f(x, p, q), p, q) and u0 = φ−1(z0). Below, if Fy(z0) 6= 0, we keep
the notations of the above.

Suppose that z0 is a regular point of Fq|F−1(0). By Proposition 2.5 and Theorem 2.2, F = 0 is
of type C at z0 and Σc is a 2-dimensional manifold around z0. We call this type RCy. Moreover,
F = 0 has a complete singular solution on Σc at z0 if and only if z0 6∈ Σcc or Σcc is a 1-dimensional
manifold around z0 by Theorem 2.2.

Remark 3.1. If Σcc is a 1-dimensional manifold around z0, then ∆ = Σcc and Σcc is an isolated
singular solution passing through z0 (see, [3, Proposition 1.4]). In this case, F = 0 have a
two-parameter family of geometric solutions, a one-parameter family of singular solutions and
an isolated singular solution passing through z0 ∈ Σcc, see Example 4.2.

3.3. On the type RR1
y. Let z0 ∈ Σc and Fy(z0) 6= 0. Suppose that z0 is a regular point

of FX |F−1(0). By Proposition 2.5 and Theorem 2.3, F = 0 is of type R at z0 and Σc is a 2-
dimensional manifold around z0. In this case, there are three types. First one is Σc = ∆ around
z0 (type RR1

y), second is Σc ) ∆ = Σcc around z0 (type RR2
y), and the last is Σc ) ∆ ) Σcc

around z0 (type RR3
y). We may assume that Fp(z0) = 0, namely, z0 ∈ ∆.
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Let F = 0 be of the type RR1
y at z0. By Theorem 2.3, F = 0 has a complete solution of Σc

at z0 if and only if z0 6∈ Σcc or Σcc is a 1-dimensional manifold around z0. In this case, we have
the following result, see Examples 4.1 and 4.4.

Theorem 3.2. Let F = 0 be of type RR1
y at z0 ∈ ∆. If z0 6∈ Σcc, then there exists a unique

geometric solution passing through z0.

Proof. We denote F (x, y, p, q) = −y+f(x, p, q) = 0. Since F = 0 is of type R at z0, there exists
a smooth function germ α : (F−1(0), z0)→ R such that

fq = α · (fx − p+ qfp).(1)

A complete solution, Γ : (R×R2, 0)→ (F−1(0), z0), is given by integrating the vector field φ∗X,
where X : U → TU is given by

X = (−α,−α · q, 1)

(cf. [3, Lemma 3.1]). By (1), we have

(fx − p+ qfp)q = (αx + qαp) · (fx − p+ qfp) + α · ((fx − p+ qfp)x + q(fx − p+ qfp)p) + fp.

It follows from the assumption Σc = ∆ that

(fx − p+ qfp)q|φ−1(Σc) = α|φ−1(Σc) · ((fx − p+ qfp)x + q(fx − p+ qfp)p)|φ−1(Σc).

In this case, a complete solution on Σc, Φ : (R × R, 0) → (Σc, z0), is given by integrating the
vector field φ∗Y , where Y : φ−1(Σc)→ Tφ−1(Σc) is given by

Y = (−α|φ−1(Σc), (−α · q)|φ−1(Σc), 1)

(cf. [20, Lemma 3.5]). It follows that Γ|Γ−1(Σc) = Φ and hence there is a geometric solution
on Σc. Let γ : (R, t0) → (Σc, z0); γ(t) = (x(t), y(t), p(t), q(t)) be a geometric solution passing
through z0. Since z0 6∈ Σcc, we have x′(t)+α·q′(t) = 0 at t0. It follows that we can reparametrise
γ(t) as (x(t), y(t), p(t), t). By the analogous way in the proof of Lemma 3.2 in [21], we can show
uniqueness of the geometric solution passing through z0. 2

Proposition 3.3. Let F = 0 be of type RR1
y at z0 ∈ ∆. If Σcc is a 1-dimensional manifold

around z0, then Σcc is a singular solution passing through z0.

Proof. It is easy to see that Σcc is a geometric solution passing through z0. By definition,

φ−1(Σc) = (fx − p+ qfp)
−1(0)

and

φ−1(Σcc) = (fx − p+ qfp)
−1(0) ∩ ((fx − p+ qfp)x + q(fx − p+ qfp)p)

−1(0).

To show that Σcc is not a leaf of the complete solution on F−1(0) (and on Σc) at z0, it is sufficient
to check that the scalar product of grad((fx − p+ qfp)x + q(fx − p+ qfp)p) and the vector field
X is non-zero at u0. Now

〈grad((fx − p+ qfp)x + q(fx − p+ qfp)p), (−α,−α · q, 1)〉
= −α · ((fx − p+ qfp)x + q(fx − p+ qfp)p)x − α · q((fx − p+ qfp)x + q(fx − p+ qfp)p)p

+ ((fx − p+ qfp)x + q(fx − p+ qfp)p)q.(2)

It follows from (1) that (2) is equal to 2(fxp + qfpp)− 1 at u0. By the assumption Σc = ∆, there
exists a smooth function germ β such that fp = β · (fx− p+ qfp) at least locally. Differentiating
this equality with respect to x and p, we get

fxp = βx · (fx − p+ qfp) + β · (fx − p+ qfp)x
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and

fpp = βp · (fx − p+ qfp) + β · (fx − p+ qfp)p.

It follows that (2) is non-zero at u0. 2

3.4. On the type RR2
y. Suppose that F = 0 is of type RR2

y at z0. See Example 4.2. Then
Σc ) ∆ = Σcc around z0. By Theorem 2.3, F = 0 has a complete solution on Σc at z0 if and
only if Σcc is a 1-dimensional manifold around z0. In this case, we have the following result.

Theorem 3.4. Let F = 0 be of type RR2
y at z0 ∈ ∆. F = 0 has a complete singular solution

on Σc at z0 if and only if Σcc is a 1-dimensional manifold around z0.

Proof. By Theorem 2.3, each leaf of the complete solution on F−1(0) which meet Σc away
from Σcc intersect Σc transversally, and each leaf of the complete solution on Σc intersects Σcc
transversally. Therefore the complete solution on Σc is the complete singular solution on Σc. 2

By the definition of Σcc,

(fx − p+ qfp)x + q(fx − p+ qfp)p = 0, (fx − p+ qfp)q = 0

at z0 ∈ Σcc. Since z0 is a regular point of FX |F−1(0), (fx − p + qfp)p 6= 0 at z0. The equation
F = 0 satisfies either

(i) ((fx − p+ qfp)x + q(fx − p+ qfp)p)q 6= 0

or

(ii) ((fx − p+ qfp)x + q(fx − p+ qfp)p)q = 0

at z0. It follows that z0 is a regular point of (fx−p+qfp)x+q(fx−p+qfp)p, or of (fx−p+qfp)q.

Proposition 3.5. Let F = 0 be of type RR2
y at z0 ∈ ∆. Suppose that Σcc is a 1-dimensional

manifold around z0.
(1) If F = 0 satisfies the condition (i), then each leaf of the complete solution on F−1(0) is

intersects Σcc transversally and hence Σcc is a singular solution passing through z0.
(2) If F = 0 satisfy the conditions (ii) and Fpq|Σcc

≡ 0 around z0, then each leaf of the complete
solution on F−1(0) is tangent to Σcc. If γ(t) = (x(t), y(t), p(t), q(t)) ∈ Σcc is a geometric
solution, γ(t) is represented by the form (a, b, c, t), where a, b, c ∈ R. Moreover, γ(t) is a leaf of
the complete solution on F−1(0).

Proof. (1) Since φ−1(Σcc) = (fx − p+ qfp)
−1(0) ∩ ((fx − p+ qfp)x + q(fx − p+ qfp)p)

−1(0), it
is sufficient to check that the scalar product of grad((fx − p+ qfp)x + q(fx − p+ qfp)p) and the
vector field X is non-zero at u0. By the same calculations in Proposition 3.3,

〈grad((fx − p+ qfp)x + q(fx − p+ qfp)p), (−α,−α · q, 1)〉 = 2(fxp + qfpp)− 1

at u0. The condition (i) guarantees that 2(fxp + qfpp)− 1 6= 0 at u0. Therefore each leaf of the
complete solution on F−1(0) intersects Σcc transversally and hence Σcc is a singular solution
passing through z0.

(2) Since φ−1(Σcc) = (fx − p + qfp)
−1(0) ∩ ((fx − p + qfp)q)

−1(0), it is sufficient to check
that the scalar product of grad(fx − p + qfp)q and the vector field X is zero. By the direct
calculations, the consequence follows from the condition Fpq|Σcc ≡ 0 around z0.

Let γ(t) = (x(t), y(t), p(t), q(t)) ∈ Σcc be a geometric solution passing through z0. By differ-
entiating fp(x(t), p(t), q(t)) = 0 with respect to t, we get

(fxp + qfpp)(x(t), p(t), q(t)) · x′(t) + fpq(x(t), p(t), q(t)) · q′(t) = 0.
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By the condition (ii), we have fxp + qfpp = 1/2 at u0 and hence x′(t) ≡ 0. This means that x(t)
is constant on Σcc around z0. Differentiating (1) with respect to p, we have

fpq = αp · (fx − p+ qfp) + α · (fx − p+ qfp)p.

It follows that α|Σcc
≡ 0 around z0. By the form of the vector field X (see, in the proof of

Theorem 3.2), Γ|Γ−1(Σcc) = γ. 2

3.5. On the type RR3
y. Suppose that F = 0 is of type RR3

y at z0. See Example 4.3. Then
Σc ) ∆ ) Σcc around z0. In this subsection, assume that ∆ is a 1-dimensional manifold around
z0 and z0 6∈ Σcc, since we consider complete solutions. By Theorem 2.3, F = 0 has a complete
solution on Σc at z0. If ∆ is not a geometric solution passing through z0, the complete solution
on Σc is the complete singular solution on Σc. On the other hand, if ∆ is a geometric solution
passing through z0, we have the following result.

Proposition 3.6. Let F = 0 be of type RR3
y at z0 ∈ ∆\Σcc. If γ(t) = (x(t), y(t), p(t), q(t)) ∈ ∆

is a geometric solution passing through z0, then γ(t) is represented by the form (a, b, c, t) where
a, b, c ∈ R. Moreover, γ(t) is a leaf of both complete solutions on F−1(0) and Σc.

Proof. Since z0 6∈ Σcc, we have (fx − p + qfp)x + q(fx − p + qfp)p 6= 0 at u0. Differentiating
equalities (fx−p+ qfp)(x(t), p(t), q(t)) = 0 and fp(x(t), p(t), q(t)) = 0 with respect to t, we have(

(fx − p+ qfp)x + q(fx − p+ qfp)p (fx − p+ qfp)q
fxp + qfpp fpq

)(
x′(t)
q′(t)

)
=

(
0
0

)
.

Since γ(t) is a geometric solution, (x′(t), q′(t)) 6= (0, 0) on ∆. Thus

det

(
(fx − p+ qfp)x + q(fx − p+ qfp)p (fx − p+ qfp)q

fxp + qfpp fpq

)
= 0

on ∆. It follows that α|∆ ≡ 0 and hence x′(t) ≡ 0. This means that x(t) is constant on ∆
around z0. By the forms of the vector field X for a complete solution on F−1(0) and of the
vector field Y for a complete solution on Σc (which appeared in the proof of Theorem 3.2), it
follows that Γ|Γ−1(∆) = Φ|Φ−1(∆) = γ. 2

3.6. On the type SCy. Suppose that F = 0 is of type C at z0 ∈ Σc and z0 is a singular point
of Fq|F−1(0) and FX |F−1(0). We call this type SCy. See Example 4.4.

Proposition 3.7. Let F = 0 be of type SCy at z0. If Σc is a 2-dimensional manifold around
z0, then z0 6∈ Σcc.

Proof. Let F (x, y, p, q) = −y+ f(x, p, q) = 0. Since F = 0 is of type C at z0, there is a function
germ α : (F−1(0), z0)→ R such that

fx − p+ qfp = α · fq.(3)

By differentiating (3) with respect to p, we have fxp − 1 + qfpp = αp · fq + α · fpq. Hence
fxp + qfpp = 1 at u0. By a direct calculation,

(fx − p+ qfp)xq + q(fx − p+ qfp)pq = (fxq + qfpq)x + q(fxq + qfpq)p + fxp + qfpp.(4)

On the other hand, by (3),

(fx − p+ qfp)xq + q(fx − p+ qfp)pq

= (αxq + qαpq) · fq + αq · (fqx + qfpq) + (αx + qαp) · fqq + α · (fxqq + qfpqq).(5)

By definition, φ−1(Σc) = f−1
q (0). Since Σc is a 2-dimensional manifold around z0, there is

a regular function germ g : (U, u0) → R and a function germ k : (U, u0) → (R, 0) such that
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φ−1(Σc) = g−1(0) and fq = k · g at least locally. By a direct calculation, the right hand of (4)
is given by

((kx+qkp)x+q(kx+kp)p) ·g+2(kx+qkp) ·(gx+qgp)+k ·((gx+qgp)x+q(gx+qgp)p)+fxp+qfpp.

Also the right hand of (5) is given by

(αxq + qαpq) · k · g + αq · ((kx + qkp) · g + k · (gx + qgp)) + (αx + qαp) · (kq · g + k · gq)
+ α · ((kxq + qkpq) · g + kq · (gx + qgp) + (kx + qkp) · gq + k · (gxq + qgpq)) .

If z0 ∈ Σcc, then g = gx + qgp = gq = 0 at u0. This contradicts the fact that (4) = (5), namely
1=0 at u0. 2

Under the assumption of Proposition 3.7, it follows from z0 6∈ Σcc that there is a complete
solution on Σc at z0. According to Theorem 3.11 in below, a geometric solution passing through
z0 on Σc is a singular solution for type C. Hence the complete solution on Σc is the complete
singular solution on Σc at z0.

3.7. On the type SRy. Suppose that F = 0 is of type R at z0 ∈ Σc and z0 is a singular point
of Fq|F−1(0) and FX |F−1(0). We call this type SRy. We can also prove the following result by
using the same arguments in the proof of Proposition 3.7, so we omit the proof.

Proposition 3.8. Let F = 0 be of type SRy at z0. If Σc is a 2-dimensional manifold around
z0, then z0 6∈ Σcc.

Moreover, we have the following result.

Proposition 3.9. Let F = 0 be of type SRy and not of type C at z0. If Σc is a 2-dimensional
manifold around z0, then ∆ is a 1-dimensional manifold around z0. Moreover, ∆ is not a
geometric solution passing through z0.

Proof. By (1), fq = α · (fx − p+ qfp) with α(z0) = 0. Since φ−1(Σc) = (fx − p+ qfp)
−1(0) is a

2-dimensional manifold around z0, there exist a regular function germ g : (U, u0) → (R, 0) and
a function germ k : (U, u0)→ (R, 0) such that fx − p+ qfp = k · g and k−1(0) ⊂ g−1(0) at least
locally. By a direct calculation, we have

(fx − p+ qfp)xq + q(fx − p+ qfp)pq = 1

at u0. On the other hand,

(fx − p+ qfp)xq + q(fx − p+ qfp)pq = kq · (gx + qgp) + (kx + qkp) · gq
at u0. Hence kq · (gx + qgp) + (kx + qkp) · gq = 1 at u0. If gq(u0) = 0, then kq(u0) 6= 0. It follows
that k is represented by λ(x, p, q) · (q−µ(x, p)) at least locally, where λ and µ are function germs
with λ(u0) 6= 0. Since k−1(0) ⊂ g−1(0), g(x, p, µ(x, p)) = 0. By differentiating this equality with
respect to x and p, we have

gx(x, p, µ(x, p)) + µx(x, p)gq(x, p, µ(x, p)) = 0

and

gp(x, p, µ(x, p)) + µp(x, p)gq(x, p, µ(x, p)) = 0.

This contradicts the fact that g is regular at u0. Therefore we have gq 6= 0 at u0.
By the definition of ∆, φ−1(∆) = g−1(0)∩f−1

p (0). To show that ∆ is a 1-dimensional manifold
around z0, it is sufficient to show that the matrix

A =

(
gx gp gq
fxp fpp fpq

)



280 MASATOMO TAKAHASHI

has rank 2 at u0. Since fx− p+ qfp and fq are singular at u0, fxp + qfpp = 1 and fpq = 0 at u0.
Therefore rankA = 2 at u0.

Next suppose that γ : (R, t0) → (∆, z0); γ(t) = (x(t), y(t), p(t), q(t)) is a geometric solution
passing through z0. By differentiating equalities g(x(t), p(t), q(t)) = 0 and fp(x(t), p(t), q(t)) = 0
with respect to t, we have(

(gx + qgp)(x(t), p(t), q(t)) gq(x(t), p(t), q(t))
(fxp + qfpp)(x(t), p(t), q(t)) fpq(x(t), p(t), q(t))

)(
x′(t)
q′(t)

)
=

(
0
0

)
.

Since the determinant of the matrix (
gx + qgp gq
fxp + qfpp fpq

)
does not vanish at t0, (x′(t), q′(t)) = (0, 0) at t0. This contradicts the fact that γ(t) is a geometric
solution passing through z0. 2

As a conclusion, if F = 0 is of type SRy, not of type C at z0 and Σc is a 2-dimensional
manifold around z0, then there is a complete singular solution on Σc at z0 by Propositions 3.8
and 3.9.

Finally, in this section, we give an important difference between type C and type R.

Lemma 3.10. Let F = 0 be of type RCy at z0. If z0 ∈ ∆ \ Σcc, then ∆ is not a geometric
solution passing through z0.

Proof. By Theorem 2.2, ∆ is a 1-dimensional manifold around z0. Suppose that

γ : (R, t0)→ (∆, z0); γ(t) = (x(t), y(t), p(t), q(t))

is a geometric solution passing through z0. Differentiating

fp(x(t), p(t), q(t)) = 0 and fq(x(t), p(t), q(t)) = 0

with respect to t, we have(
(fxp + qfpp)(x(t), p(t), q(t)) fpq(x(t), p(t), q(t))
(fxq + qfpq)(x(t), p(t), q(t)) fqq(x(t), p(t), q(t))

)(
x′(t)
q′(t)

)
=

(
0
0

)
.

Moreover, differentiating (3) with respect to p and q, fxp − 1 + qfpp = αp · fq + α · fpq and
fxq + fp + qfpq = αq · fq + α · fqq respectively. Then

det

(
(fxp + qfpp)(x(t), p(t), q(t)) fpq(x(t), p(t), q(t))
(fxq + qfpq)(x(t), p(t), q(t)) fqq(x(t), p(t), q(t))

)
= fqq(x(t), p(t), q(t)).

The condition z0 6∈ Σcc guarantees that fqq 6= 0 at u0. It follows that (x′(t), q′(t)) = (0, 0) at t0.
This contradicts the fact that γ(t) is a geometric solution passing through z0. 2

Theorem 3.11. Let F = 0 be of type C at z0. If γ(t) = (x(t), y(t), p(t), q(t)) ∈ Σc is a geometric
solution passing through z0, then γ(t) is the singular solution.

Proof. First we assume that z0 is a regular point of Fq|F−1(0). If z0 6∈ ∆, then γ(t) is a singular
solution passing through z0 and hence we may regard that γ(t) ⊂ ∆ by Theorem 2.2. Also if
z0 6∈ Σcc, then γ(t) is not a geometric solution passing through z0 by Lemma 3.10. We may
assume that γ(t) ⊂ Σcc. Then we can conclude that γ(t) is a singular solution passing through
z0, see Remark 3.1.
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Next we assume that z0 is a singular point of Fq|F−1(0). Also we may regard that γ(t) ⊂ ∆.
By differentiating fp(x(t), p(t), q(t)) = 0 with respect to t,

(fxp + qfpp)(x(t), p(t), q(t)) · x′(t) + fpq(x(t), p(t), q(t)) · q′(t) = 0.

Since fxp − 1 + qfpp = αp · fq + αp · fpq, we have

(1 + α · fpq(x(t), p(t), q(t))) · x′(t) + fpq(x(t), p(t), q(t)) · q′(t) = 0.

By the assumption, fpq(u0) = 0. Hence x′(t0) = 0 and q′(t0) 6= 0. It follows from the form of
smooth complete solution, γ(t) is the singular solution passing through z0. This completes the
proof of Theorem 3.11. 2

As a consequence, if F = 0 is of type C and there exists a geometric solution on the contact
singular set, then uniqueness for geometric solutions does not hold.

4. Examples

We give examples of completely integrable second order ODEs. For more examples, refer to
[3, Examples 5.1 and 5.2] etc.

Example 4.1. Let F (x, y, p, q) = y + (1/2)p2q2n+1 = 0, where n is a natural number. In this
case, FX = p(1 + q2n+2) and Fq = (1/2)(2n+ 1)p2q2n. Hence F = 0 is of type R at z0 ∈ F−1(0).
Since 0 is a regular value of FX |F−1(0), and

Σc = {(x, y, p, q) | y = p = 0} = ∆, Σcc = {(x, y, p, q) | y = p = q = 0},

F = 0 is of type RR1
y at z0 ∈ Σc. By Theorems 2.3, 3.2 and Proposition 3.3, there exist a

complete solutions on F−1(0) and Σc, and a singular solution. Indeed, the complete solutions
Γ : R× R2 → F−1(0),Φ : R× R→ Σc and the singular solution γ : R→ Σcc are given by

Γ(t, r, s) =
(
− 2n+ 1

2
r

∫
(1 + t2n+2)−

6n+5
4(n+1) t2ndt+ s,

−1

2
r2t2n+1(1 + t2n+2)−

2n+1
2(n+1) , r(1 + t2n+2)−

2n+1
4(n+1) , t

)
,

Φ(t, a) = (a, 0, 0, t) and γ(t) = (t, 0, 0, 0). We can observe that Γ|Γ−1(Σc) = Φ.

Example 4.2. Let F (x, y, p, q) = −y + pqn − (n/(2n+ 1))q2n+1 = 0, where n is a natural
number. In this case, FX = −p + qn+1 and Fq = −nqn−1(−p + qn+1). Hence F = 0 is of type
C and of type R for n = 1, and of type R for n ≥ 2 at z0 ∈ F−1(0). Since 0 is a regular value
of FX |F−1(0) and

Σc =

{
(x, y, p, q) | y =

n+ 1

2n+ 1
q2n+1, p = qn+1

}
, ∆ = {(x, y, p, q) | y = p = q = 0} = Σcc,

F = 0 is of type RR2
y at z0 ∈ ∆. Note that F = 0 is also of type RCy at z0 if n = 1. By Theorems

2.3 and 3.4, there exist a complete solution on F−1(0) and a complete singular solution on Σc.
Moreover, F = 0 satisfies the condition (i) of Proposition 3.5 in §3.4, Σcc is an isolated singular
solution. Indeed, the complete solution on F−1(0), the complete singular solution on Σc and the
isolated singular solution are given by

Γ(t, r, s) =

(
tn + r,

n2

(n+ 1)(2n+ 1)
t2n+1 + stn,

n

n+ 1
tn+1 + s, t

)
,

Φ(t, a) =

(
n+ 1

n
tn + a,

n+ 1

2n+ 1
t2n+1, tn+1, t

)
and γ(t) = (t, 0, 0, 0).
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If n = 1, the complete solution on F−1(0) can be parametrised by

Γ(t, r, s) =

(
t,

1

6
t3 +

1

2
rt2 + st+ rs− 1

3
r3,

1

2
t2 + rt+ s, t+ r

)
.

Example 4.3. Let

F (x, y, p, q) = −y + (1/2)x2 − (1/n)pqn + (1/n)xqn + (1/2n2)q2n − (1/n(2n+ 1))q2n+1 = 0,

where n is a natural number. In this case, FX = x+ (1/n)qn−p− (1/n)qn+1 and Fq = qn−1FX .
Since 0 is a regular value of FX |F−1(0) and

Σc =

{
(x, y, p, q) | y =

1

2
x2 − 1

2n2
qn+1 +

n+ 1

n2(2n+ 1)
q2n+1

}
,

∆ =

{
(x, y, p, q) | y =

1

2
x2, p = x, q = 0

}
, Σcc = ∅,

F = 0 is of type RR3
y at z0 ∈ ∆. Note that if n = 1, then F = 0 is also of type RCy at z0.

By Theorem 2.3, there exist complete solutions on F−1(0) and Σc. Since ∆ is not a geometric
solution, the complete solution on Σc is the complete singular solution on Σc. The complete
solution on F−1(0) and the complete singular solution on Σc at 0 are given by

Γ(t, r, s) =

(
− 1

n
tn + r,

1

(n+ 1)(2n+ 1)
t2n+1 − 1

n
stn +

1

2
r2,− 1

n+ 1
tn+1 + s, t

)
,

Φ(t, a) =

(
x(t, a),

1

2
x(t, a)2 − 1

2n2
tn+1 +

n+ 1

n2(2n+ 1)
t2n+1, x(t, a) +

1

n
tn − 1

n
tn+1, t

)
,

where

x(t, a) = − 1

n

(
n+ 1

n
tn +

1

n− 1
tn−1 + · · ·+ 1

2
t2 + t+ log |t− 1|

)
+ a.

Example 4.4. Let F (x, y, p, q) = −y + xp − (1/2)x2q + xn = 0, where n is a natural number.
In this case, FX = nxn−1 and Fq = −(1/2)x2. Hence F = 0 is of type R for n = 1 and 2 at
z0 ∈ F−1(0). Also F = 0 is both types of C and R for n = 3, and of type C for n ≥ 4 at z0.

First suppose that n = 1. Since FX = 1, we have Σc = ∅. It follows that F = 0 is of type RX
at z0. The complete solution on F−1(0) at 0 is given by

Γ(t, r, s) =

(
2r

1− rt
,

4r

1− rt
log |1− rt|+ 4r + 2rs

1− rt
+

2r

(1− rt)2
, 2 log |1− rt|+ 2

1− rt
+ s, t

)
.

Second suppose that n = 2. Since 0 is a regular value of FX |F−1(0) and

Σc = {(x, y, p, q) | x = y = 0} = ∆, Σcc = ∅,
F = 0 is of type RR1

y at z0 ∈ ∆. The complete solutions on F−1(0) and Σc are given by

Γ(t, r, s) =

(
re

t
4 ,
r2

2
te

t
2 − 3r2e

t
2 + rse

t
4 , rte

t
4 − 4re

t
4 + s, t

)
,

Φ(t, a) = (0, 0, a, t). We can observe that Γ|Γ−1(Σc) = Φ.
Finally suppose that n ≥ 3. Since 0 is a singular value of Fq|F−1(0) and FX |F−1(0), F = 0 is

of type SCy at z0 ∈ ∆. We have

Σc = {(x, y, p, q) | x = y = 0} = ∆, Σcc = ∅.
The complete solution on F−1(0) and the complete singular solution on Σc are given by

Γ(t, r, s) =

(
t,

2

(n− 2)(n− 1)
tn +

1

2
rt2 + st,

2n

(n− 2)(n− 1)
tn−1 + rt+ s,

2n

n− 2
tn−2 + r

)
,
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Φ(t, a) = (0, 0, a, t). Note that if n = 3, then F = 0 is also of type SRy at z0.

Example 4.5. Let F (x, y, p, q) = xq + (a − x)p − by = 0 be the confluent hypergeometric
equations (the degenerate hypergeometric equations), where a, b ∈ R, see in [16]. The equation
have the confluent hypergeometric function as a solution. However, we can decide by using the
results whether the equation have a complete solution or not. This is a new viewpoint for the
equation as far as we know.

Since we consider the regular equation, we may assume that b 6= 0. By

FX = q(1 + a− x)− p(1 + b) and Fq = x,

Σc = {(x, y, p, q) | x = 0, ap− by = 0, q(1 + a)− p(1 + b) = 0}.
If z0 6∈ Σc, then there exist a complete solution at z0 and also a unique geometric solution passing
through z0. If z0 ∈ Σc and a = −1, b = −1, then FX = q · Fq, Σc is a 2-dimensional manifold
and Σcc = ∅. It follows that F = 0 is of type RCy at z0. By Theorem 2.2, there exist a complete
solution on F−1(0) and a complete singular solution on Σc. The complete solution on F−1(0)
and the complete singular solution on Σc are given by

Γ(t, r, s) =
(
t, ret + (1 + t)s, ret + s, ret

)
, Φ(t, a) = (0, a, a, t).

If z0 ∈ Σc and a = −1, b 6= −1 (respectively, a 6= −1), then Σc is a 1-dimensional manifold.
Hence F = 0 is not completely integrable at z0.

Appendix A. Completely integrable implicit first order ODEs

In this appendix, we quickly review known results for the theory of completely integrable
implicit first order ODEs

F (x, y, p) = 0, p = dy/dx.

For more detail, see [10, 11, 12, 13, 19]. Assume that 0 is a regular value of F . We say that
F = 0 is completely integrable at a point if there exists an immersive one-parameter family of
geometric solutions on F−1(0) at the point. The contact singular set Σc = Σc(F ) is given by

Σc = {z ∈ J1(R,R) | F (z) = 0, FX(z) = 0, Fp(z) = 0}.

Here FX = Fx + pFy. We say that an equation F = 0 is of (first order) Clairaut type (for short,
type C) at z0 if there exists a function germ α : (F−1(0), z0)→ R such that

FX |F−1(0) = α · Fp|F−1(0),

and of reduced type (for short, type R) at z0 if there exists a function germ β : (F−1(0), z0)→ R
such that

Fp|F−1(0) = β · FX |F−1(0),

In [11], it has been shown the following results.

Theorem A.1. ([11]) Let F (x, y, p) = 0 be an implicit first order ODE at z0. The following are
equivalent:

(1) F = 0 is completely integrable at z0.
(2) F = 0 is either of type C or of type R at z0.
(3) z0 6∈ Σc or Σc is a 1-dimensional manifold around z0.
Moreover, if Σc is a 1-dimensional manifold around z0, then Σc is a singular solution of F = 0

passing through z0.



284 MASATOMO TAKAHASHI

Now suppose that z0 ∈ Σc. Since F = 0 is regular, Fy(z0) 6= 0. By the implicit function
theorem, there exists a smooth function f : U → R, where U is an open set in R2, such that in
a neighbourhood of z0, (x, y, p) ∈ F−1(0) if and only if −y + f(x, p) = 0. Thus we may assume
without loss of generality that F (x, y, p) = −y+ f(x, p) = 0. It follows that z0 is a regular point
of either Fp|F−1(0) or FX |F−1(0). Therefore, completely integrable implicit first order ODEs have
four kinds of types (cf. [19]), see Table 2.

Conditions Type Name
z0 6∈ Σc Fp(z0) 6= 0 C Cp

FX(z0) 6= 0 R RX
z0 ∈ Σc Fy(z0) 6= 0 z0 is a regular point of Fp|F−1(0) C RCy

z0 is a regular point of FX |F−1(0) R RRy
Table 2. A classification of types of completely integrable implicit first order ODEs at z0.
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