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ON SAITO’S NORMAL CROSSING CONDITION

MATHIAS SCHULZE

Abstract. Kyoji Saito defined a residue map from the logarithmic differential 1-forms along

a reduced complex analytic hypersurface to the meromorphic functions on the hypersurface.
He studied the condition that the image of this map coincides with the weakly holomorphic

functions, that is, with the functions on the normalization. With Michel Granger, the author
proved that this condition is equivalent to the hypersurface being normal crossing in codimen-

sion one. In this article, the condition is given a natural interpretation in terms of regular

differential forms beyond the hypersurface case. For reduced equidimensional complex ana-
lytic spaces which are free in codimension one, the geometric interpretation of being normal

crossing in codimension one is shown to persist.

Introduction

Saito [29] introduced the complex of logarithmic differential forms along a reduced hypersur-
face D in a smooth complex manifold S. It is defined as

Ω•(logD) = {ω ∈ Ω•S(D) | dID ∧ ω ⊆ Ω•+1
S }

where ID is the ideal sheaf of D. Locally, if ID = 〈h〉, such forms are characterized by having
a presentation as

gω =
dh

h
∧ ξ + η

where ξ ∈ Ω•−1
S and η ∈ Ω•S have no pole and g ∈ OS maps to a non-zero divisor in OD. He

defined a logarithmic residue map

(0.1) ρD : Ω•(logD)→MD ⊗OD
Ω•−1
D , ω 7→ ξ

g
|D

where MD = Q(OD) denotes the meromorphic functions on D. This residue map gives rise to
an exact sequence

(0.2) 0 // Ω•S
// Ω•(logD)

ρD // σ•−1
D

// 0

where σ•−1
D denotes the image of ρD. Let νD : D̃ → D be a normalization and note that

MD = MD̃. Saito [29, (2.8),(2.11)] showed that

(0.3) (νD)∗OD̃ ⊆ σ
0
D

and that, if D is a plane curve, equality holds if and only D is normal crossing. Generalizing this
result to reduced hypersurfaces D, Granger and the author [13] showed that equality in (0.3)
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is equivalent to D being normal crossing in codimension one. The purpose of this article is to
further generalize this preceding result.

In §2, we suggest a more general point of view for the equality in (0.3). It is based on
Aleksandrov’s result [2, §4, Cor. 2] that σ•D = ω•D where the latter denotes the regular differential
forms on D. With Tsikh [4, Thm. 2.4] (or [5, Thm. 3.1]) and later in [3, Thm. 2] he generalized
this result to complete intersections using (different versions of) multilogarithmic differential
forms and their residues. We relate it to Aleksandrov’s multilogarithmic residue map and we
comment on some claims made in [3]. Regular differential forms are defined under more general
hypotheses. More specifically let X be a reduced equidimensional complex analytic singularity
with normalization νX : X̃ → X. Due to normality of X̃, we have OX̃ = ω0

X̃
(see Corollary 2.3).

We shall therefore refer to the equality

(νX)∗ω
0
X̃

= ω0
X

resulting from (0.3) as Saito’s normal crossing condition. Our approach is independent of an
embedding and does not require a generalization of logarithmic differential forms such as mul-
tilogarithmic differential forms in the complete intersection case. While Aleksandrov and Tsikh
use Barlet’s description of regular differential forms in the complex analytic context (see [7]) we
prefer to rely on a general algebraic approach due to Kersken that is reviewed in §1. In §4 and §5,
we study Saito’s normal crossing condition for reduced curve and Gorenstein singularities. In §6
we give it the following geometric interpretation analogous to [13, Thm. 1.2] in the hypersurface
case.

Theorem 0.1. Let X be a reduced equidimensional complex analytic singularity which is free
in codimension one. Then X satisfies Saito’s normal crossing condition if and only if X is a
normal crossing divisor in codimension one. �

The additional freeness hypothesis replaces the fact that any reduced hypersurface is a free
divisor in codimension one. Our generalization of freeness is motivated by Aleksandrov–Terao
theorem (see [1, §2 Thm.] and [38, Prop. 2.4]) stating that freeness of a reduced hypersurface
is equivalent to Cohen–Macaulayness of the Jacobian ideal. We call a reduced Gorenstein sin-
gularity free if the ω-Jacobian ideal is a Cohen–Macaulay ideal (see Definition 6.1). In case of
complete intersections of codimension k Pol [28, Thm. 4.5] showed that freeness is equivalent to
the projective dimension of multilogarithmic differential k forms being equal to (or equivalently
bounded by) k − 1. Her approach is a direct generalization of the one taken in [13].

Acknowledgments. The author is grateful to Michel Granger, to Delphine Pol, and to the
anonymous referee for helpful comments.

1. Regular and logarithmic differential forms

Fix a complete valued field k of characteristic 0 and let A be a local analytic k-algebra of
dimension r ≥ 1. In particular A is Noetherian, Henselian and catenary (see [14, II.§0.1,§6.2]).
Informally we refer to A as a singularity.

If A admits a positive grading in the sense of Scheja and Wiebe (see [34, §3]) then we call it
a quasihomogeneous singularity. This means that mA is generated by eigenvectors of an Euler
derivation χ ∈ Derk(A,mA) with positive rational eigenvalues w1, . . . , wn. In this case one can
write χ =

∑n
i=1 wixi∂xi

. If w1 = · · · = wn then we call the grading a standard grading and A a
homogeneous singularity.

We denote by Q(−) the total ring of fractions and abbreviate L := Q(A). Let

R = k〈〈x1, . . . , xn〉〉
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denote the regular ring of convergent power series over k in n variables x1, . . . , xn. It is a
formal power series ring in case the valuation is trivial. For a suitable n, pick a finite k-algebra
homomorphism

(1.1) R→ A

of codimension m = n− r.

1.1. Kersken’s regular differential forms. We begin by reviewing Kersken’s description of
regular differential forms (see [19, 18, 20]). Denote by ΩA := ΩA/k the universally finite differen-
tial algebra of A over k (see [21, §11]). In particular, ΩA =

⊕
p∈NΩpA is graded with differential

d : ΩA → ΩA[1] of degree 1. Let C(A) be the (unaugmented) Cousin complex of A

C(A) : 0→ C0(A)→ C1(A)→ · · ·
with respect to A-active sequences (see [19, §2]). It is a resolution of A if and only if A is Cohen–
Macaulay and a (minimal) injective resolution if and only if A is Gorenstein (see [37]). Setting
CΩ(A) := C(A)⊗A ΩA, the residue complex of A is the complex of graded (ΩA, d)-modules

DΩ(A) := HomΩR
(ΩA, CΩ(R))[m;m]

where HomΩR
denotes graded HomΩR

and [m;m] signifies a shift by m of both the ΩR-module
and Cousin complex grading. Notably this definition is independent of the choice of (1.1) (see
[18, (3.3)]). We write δ both for the Cousin differential of C(R) and induced differentials. The
0th cohomology of DΩ(A) with respect to δ is a graded (ΩA, d)-module

ωA := H0(DΩ(A), δ),

the complex of regular differential forms over A (see [18, p. 442]). For any graded ΩR-module
M one can identify (see [18, (3.6)])

(1.2) HomΩR
(M,CΩ(R)) = HomR(M [n],ΩnR ⊗R C(R)).

Since C(R) is an injective resolution of R, this implies that CΩ(R) is an injective resolution of
ΩR. It follows that (see [18, §6])

ωA = ExtmΩR
(ΩA,ΩR)[m]

which has graded components

(1.3) ωpA = ExtmR (Ωr−pA ,ΩnR) = HomA(Ωr−pA , ωrA)

due to (1.2), adjunction of −⊗AA and HomR(A,−), and since HomR(A,C(R)q) = 0 for q < m.
Kersken [18, §5] constructs a trace form1 cA ∈ ω0

A. In case (1.1) is a Noether normalization
(see [14, II.§2.2]), cA ∈ ω0

A = HomΩR
(ΩA,ΩR) restricts to (see [18, (5.1.4)])

(1.4) cA|A⊗RΩR
= TrA/R⊗RΩR : A⊗R ΩR → ΩR

where TrA/R ∈ HomR(A,R) is the trace of A over R (see [30, (10.3)]). It induces a unique trace
map of complexes of (ΩA, d)-modules (see [18, (5.6)])

γA : CΩ(A)→ DΩ(A), 1 7→ cA

which is an isomorphism at regular primes of A (see [18, (5.7.2)]).
If A is reduced and equidimensional then

(1.5) ΩA ⊗A L = C0
Ω(A)

γ0
A

∼=
// D0

Ω(A)

1Its construction uses that k has characteristic 0.



ON SAITO’S NORMAL CROSSING CONDITION 127

is an isomorphism. It serves to identify ωA with its preimage

(1.6) σA := (γ0
A)−1(ωA),

the complex of regular (meromorphic) differential forms over A. Under the identification (1.3)
becomes

(1.7) σpA = HomA(Ωr−pA , σrA).

Composing ΩA → ΩA/T (ΩA) with H0(γA) yields a map

(1.8) cA : ΩA → ωA

which is an isomorphism at regular primes of A (see [18, (5.7.3)]). We denote its cokernel by

(1.9) NA := coker cA.

The preceding objects then fit into a commutative diagram

(1.10) ΩA ⊗A L
γ0
A

∼=
// D0

Ω(A)

σA
∼= //?�

OO

ωA
?�

OO

ΩA

CC���������������� cA

44iiiiiiiiiiiiiiiiiiiiii

::ttttttttt

where the leftmost map is the canonical one. In particular, its degree-0 part A ↪→ L factors
through an inclusion

(1.11) c0A : A ↪→ σ0
A
∼= ω0

A.

If (1.1) is a presentation R� A with kernel a then (see [21, Props. 3.8, 11.9])

(1.12) ΩpA = ΩpR/(aΩpR + da ∧ Ωp−1
R ) =

p∧
Ω1
A.

In other words, ΩA is an exterior differential algebra. It follows that

(1.13) DΩ(A) = AnnCΩ(R)(aΩR + da ∧ ΩR)[m;m].

Elements of CΩ(R) can be represented by residue symbols (see [19, §2]), which lie by definition
in the image of some map

(1.14) Φf1,...,fq : (ΩpR/〈f1, . . . , fq〉ΩpR)g ↪→ CqΩ(R), ξ/g 7→
[

ξ/g
f1, . . . , fq

]
,

where f1, . . . , fq, g is an R-sequence. Injectivity of this map follows from [19, (2.6)] and Wiebe’s
Theorem (see [21, E.21]) using that the ΩpR are free R-modules. The (induced) Cousin differential
δ operates as (see [19, (2.5)])

δ

[
ξ/g

f1, . . . , fq

]
=

[
ξ

f1, . . . , fq, g

]
.

Thus, elements of ker δ are of the form

[
ξ

f1, . . . , fq

]
where ξ ∈ ΩpR/〈f1, . . . , fq〉ΩpR. One may

assume that f1, . . . , fm ∈ a after multiplying ξ by a suitable transition determinant (see [19,
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(2.5.3)]). Combined with (1.13) this yields the explicit description (see [20, (1.2)])

ωpA =
{[

ξ
f1, . . . , fm

] ∣∣∣ ξ ∈ Ωp+mR , f1, . . . , fm ∈ a R-sequence,(1.15)

aξ ≡ 0 ≡ da ∧ ξ mod 〈f1, . . . , fm〉ΩR
}
.

1.2. Aleksandrov’s multilogarithmic residue. In the following we describe Aleksandrov’s
generalization (see [3]) to complete intersections of (0.2) in relation with Kersken’s description of
regular differential forms in §1.1. To this end, consider A = R/a with a = 〈h1, . . . , hm〉 generated
by an R-sequence h1, . . . , hm. Then (see [18, p. 445])

(1.16) γqA :

[
ξ/s

f1, . . . , fq

]
7→
[
dh ∧ ξ/s

h, f1, . . . , fq

]
where dh := dh1 ∧ · · · ∧ dhm. In particular,

(1.17) cA = γ0
A(1) =

[
dh
h

]
.

The following types of differential forms with simple poles where introduced by Saito (see
[29]) and implicitly by Aleksandrov (see [3]). Notably the multilogarithmic differential forms of
Aleksandrov and Tsikh (see [4, 5]) not considered here have arbitrary poles (see [28, Appendix B]
for details).

Definition 1.1. Let h = h1, . . . , hm be an R-sequence and set h := h1 · · ·hm. Then the
logarithmic differential forms along 〈h〉 and the multilogarithmic differential forms along h are
defined respectively by

ΩR(log 〈h〉) :=
{
ω ∈ 1

h
ΩR

∣∣∣ dh ∧ ω ∈ ΩR

}
,

ΩR(log h) :=
{
ω ∈ 1

h
ΩR

∣∣∣ ∀j = 1, . . . ,m : dhj ∧ ω ∈
m∑
i=1

hi
h

ΩR

}
.

Lemma 1.2. Let h = h1, . . . , hm be an R-sequence.

(a) An alternative definition of logarithmic differential forms reads

(1.18) ΩR(log 〈h〉) =
{
ω ∈ 1

h
ΩR

∣∣∣ ∀j = 1, . . . ,m : dhj ∧ ω ∈
hj
h

ΩR

}
.

In particular, ΩR(log 〈h〉) ⊆ ΩR(log h) with equality for m = 1.
(b) There is an inclusion

dhi ∧ ΩR(log 〈h〉) ⊆ ΩR(log 〈h/hi〉).

(c) If m ≤ 2 then

ΩR(log 〈h〉) ∩
m∑
i=1

hi
h

ΩR =

m∑
i=1

ΩR(log 〈h/hi〉).

Proof.
(a) For ω ∈ ΩR(log 〈h〉), we have

m∑
i=1

h

hi
dhi ∧ (hω) = hdh ∧ ω ∈ hΩR
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with dhi ∧ (hω) ∈ ΩR. Note that the factors h1, . . . , hm of h are pairwise coprime because they
form an R-sequence. It follows that dhi ∧ (hω) ∈ hiΩR for i = 1, . . . ,m. Conversely, this latter
condition implies that dh ∧ ω =

∑m
i=1

dhi

hi
∧ (hω) ∈ ΩR.

(b) For ω ∈ ΩR(log 〈h〉), (a) yields

dhj ∧ dhi ∧ ω ∈
hi
h

ΩR ∩
hj
h

ΩR =
hihj
h

ΩR

for i 6= j and hence dhi ∧ ω ∈ ΩR(log 〈h/hi〉).
(c) Let

∑m
i=1 ωi ∈ ΩR(log 〈h〉) with ωi ∈ hi

h ΩR and set ηi := h
hi
ωi ∈ ΩR. By (a) and (b), we

have dhj∧
∑
i 6=j ωi ∈

hj

h ΩR and hence
∑
i6=j hidhj∧ηi ∈ hjΩR for j = 1, . . . ,m. Since m ≤ 2 this

implies that dhj ∧ ηi ∈ hjΩR and hence dhj ∧ ωi ∈ hihj

h ΩR for i 6= j. Thus, ωi ∈ Ω(log 〈h/hi〉)
for i = 1, . . . ,m. �

The following sequences appear in [3, §4, Lem. 1, §6, Thm. 2].

Proposition 1.3. Let h = h1, . . . , hm be an R-sequence. Then there is a commutative diagram
with exact top row (and exact bottom row if m ≤ 2)

(1.19) 0 //
∑m
i=1

hi

h ΩR // ΩR(log h)
ρh
// ωA // 0

0 //
∑m
i=1 ΩR(log 〈h/hi〉)

?�

OO

// ΩR(log 〈h〉)
?�

OO

ρ′h
// ωA

where ρh denotes the composition

(1.20) ΩR(log h) �
� h· // ΩR // ΩR/〈h〉ΩR �

� Φh
// ωA,

ω = η
h

� //

[
η
h

]
= z,

with Φh from (1.14).

Proof. By (1.15) and Definition 1.1 the map ρh is well-defined. Using [19, (2.5.3)] and Wiebe’s
Theorem (see [21, E.21]), any element of ωA can be rewritten as in (1.15) with f1, . . . , fm = h.
The vanishing conditions in (1.15) reduce to

dhj ∧ ξ ≡ 0 mod 〈h〉ΩR.

Thus, the map ρh is surjective with kernel arising from the middle map in (1.20). If m ≤ 2, then
the left square in (1.19) is cartesian due to Lemma 1.2.(c). �

We deduce the following characterization of multilogarithmic differential forms appearing in
[3, Thm. 1] (see also [4, Prop. 2.1] or [5, Prop. 1.1]).

Corollary 1.4. Let h = h1, . . . , hm be an R-sequence such that A = R/〈h〉 is reduced. For any
ω ∈ ΩR(log h) there is a g ∈ R with g ∈ Areg, a ξ ∈ ΩR, and ηi ∈ hi

h ΩR for i = 1, . . . ,m, such
that

(1.21) gω =
dh

h
∧ ξ +

m∑
i=1

ηi.

Conversely, any ω ∈ ΩR,h admitting a representation (1.21) lies in ΩR(log h).
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Proof. Let ω and z be as in (1.20). By the isomorphism (1.5) and by (1.16), there is a g ∈ R
and a ξ ∈ ΩR as in the claim such that

(1.22) ρh(gω) =

[
gη
h

]
= gz = γ0

A(ξ) =

[
dh ∧ ξ
h

]
= ρh

(
dh

h
∧ ξ
)
.

Then (1.21) follows from the exact sequence (1.19). Conversely let ω = η
h ∈ ΩR,h satisfy (1.21).

Then η ∈ ΩR with

gdhj ∧ η =

m∑
i=1

dhj ∧ (hηi) ∈
m∑
i=1

hiΩR

and hence dhj ∧ η ∈
∑m
i=1 hiΩR for j = 1, . . . ,m since h1, . . . , hm, g is an R-sequence. It follows

that ω ∈ ΩR(log h). �

Remark 1.5.
(a) For m = 1 the upper and lower sequences in (1.19) coincide by Definition 1.1.
(b) It follows from (1.21) and (1.22) that (γ0

A)−1 ◦ ρh coincides with Aleksandrov’s multiple
residue defined as in (0.1) (see [3, §4]).

(c) Aleksandrov claims exactness of the bottom row for any m and surjectivity of ρ′h in (1.19)

(see [3, Thm. 2]). However Pol showed that in general ρ′h is not surjective (see [28, Prop. 4.14]).

2. Saito’s normal crossing condition

In addition to the hypotheses of §1 we shall assume from now on that k is algebraically closed
and that A is r-equidimensional. The integral closure of A in L = Q(A),

(2.1) νA : A ↪→ Ã,

is a finite k-algebra homomorphism (see [14, II.§7.2]), the normalization of A. Denote by
p1, . . . , ps the minimal primes of A and set

Ai := A/pi, Li := Q(Ai).

Then dimAi = r by r-equidimensionality of A. Since A is reduced,

(2.2) piApi
= 0, Li = Api

.

For the same reason (see [14, II.§7.2]),

(2.3) A ↪→
s∏
i=1

Ai ↪→
s∏
i=1

Ãi = Ã ↪→
s∏
i=1

Li = L

where each Ãi = Ãi is a local analytic k-algebra. Note that L = Q(Ã) and Li = Q(Ãi). The

objects of §1.1 can be defined verbatim for Ã compatible with the product decomposition (2.3).
In particular, γÃ =

⊕s
i=1 γÃi

and

ωÃ =

s⊕
i=1

ωÃi
, σÃ =

s⊕
i=1

σÃi
.

For any q ∈ Spec Ã lying over p = A ∩ q ∈ SpecA,

(2.4) dimAp = r − dimA/p = r − dim Ã/q = dim Ãq

using that A and Ã are r-equidimensional and catenary (see [25, Prop. 2.5.10])
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Proposition 2.1. There is a commutative diagram

(2.5) ΩÃ
cÃ // ωÃ� _

��

σÃ∼=

γ0
Ã
|

oo � � //
� _

��

ΩÃ ⊗Ã L

ΩA
cA //

∧
dνA

OO

ωA σA∼=

γ0
A|oo � � // ΩA ⊗A L

∼=

OO

where the horizontal compositions are the canonical maps.

Proof. Let (1.1) be a Noether normalization of A; composed with (2.1) it gives a Noether nor-

malization of Ã. Setting m = 0 in (1.3) it serves to compute both ωA and ωÃ. Note that

A⊗R Q(R) = L = Ã⊗R Q(R) and hence (see [30, §10])

(2.6) TrÃ/R |A = TrA/R .

There is a natural map of complexes of graded (ΩA, d)-modules DΩ(Ã)→ DΩ(A). By (1.4) and
(2.6) it maps cÃ|Ã⊗RΩR

7→ cA|A⊗RΩR
. Together with the left claimed injectivity in diagram (2.5)

this implies that cÃ 7→ cA (see [19, (5.1)]). The commutativity of diagram (2.5) follows using
diagram (1.10).

The inclusion (2.1) has torsion cokernel, so applying HomR(−,ΩnR) first gives

(2.7) ωr
Ã
↪→ ωrA

due to (1.3). Consider the short exact sequence (see [21, Cor. 11.8, Prop. 11.17])

(2.8) 0 // T 1(Ã/A) // Ã⊗A Ω1
A

Ã⊗dνA// Ω1
Ã

// Ω1
Ã/A

// 0.

Applying
∧p

to (2.8), which is right-exact and commutes with base change, (1.12) gives a short
exact sequence

(2.9) 0 // T p(Ã/A) // Ã⊗A ΩpA
Ã⊗

∧p dνA
// Ωp
Ã

// Ωp
Ã/A

// 0

where T p(Ã/A) is the image of T 1(Ã/A) ⊗A Ωp−1
A (see [11, Prop. A.2.2]). Both Ω1

A and Ω1
Ã

have rank r (see [32, (4.4)]). By finiteness of Ã over A, Ω1
Ã/A

is the universal differential module

which is compatible with localization and hence Ω1
Ã/A
⊗Ã L = 0. It follows that T p(Ã/A) and

Ωp
Ã/A

are torsion. In particular, this gives the right vertical isomorphism in diagram (2.5) and,

since ωr
Ã

is torsion-free, we have

(2.10) HomÃ(T p(Ã/A), ωr
Ã

) = 0 = HomÃ(Ωp
Ã/A

, ωr
Ã

).

Now (2.7) yields the upper inclusion and (2.9) and (2.10) the lower inclusion in the following
diagram

(2.11) ωp
Ã

HomA(Ωr−pA , ωr
Ã

) �
�

// HomA(Ωr−pA , ωrA)

HomÃ(Ωr−p
Ã

, ωr
Ã

) �
�

// HomÃ(Ã⊗A Ωr−pA , ωr
Ã

) ωpA

which proves injectivity of the vertical maps in diagram (2.5). �

The following fact stated by Kersken (see [20, p.6]) goes back to a result of Serre (see [24,
p. 5]).
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Proposition 2.2. If A is normal then ωA is a reflexive A-module.

Proof. By Serre’s criterion, normality of A is equivalent to conditions (R1) and (S2). Let (1.1)
be a presentation R� A with kernel a and let q ∈ SpecA.

First assume that depthAq ≤ 1. Then dimAq ≤ 1 by (S2) and Aq is regular by (R1). It
follows that (1.8) induces an isomorphism ωA,q ∼= ΩA,q and that ΩA,q =

∧
Ω1
A,q is free (see [18,

(5.7.3)] and [32, (8.7)]). In particular, ωA,q is reflexive in this case.
Then assume that depthAq ≥ 2 and let p ∈ SpecR be the preimage of q. Since R is Cohen–

Macaulay, grade(a, R) = m (see [8, Thm. 2.1.2.(b)]) and there is an R-sequence
f = f1, . . . , fm ∈ a. Then Rp/

〈
f
〉
� Ap = Aq and since Rp and hence Rp/

〈
f
〉

is Cohen–
Macaulay (see [8, Thm. 2.1.3.(a)])

grade(p, Rp/
〈
f
〉
) = dim(Rp/

〈
f
〉
) ≥ dimAq ≥ depthAq ≥ 2.

Using Ω0
A = A and ΩnR

∼= R in (1.3), ωrA
∼= HomR(A,R/

〈
f
〉
) (see [8, Lem. 1.2.4]). It follows that

(see [8, Ex. 1.4.19])

depthωrA,q = grade(q, ωrA,q) = grade(p,HomRp
(Aq, Rp/

〈
f
〉
)) ≥ 2.

Thus, reflexivity of ωrA and then of ωpA for all p follows (see [8, Prop. 1.4.1.(b)]). �

Corollary 2.3. If A is normal then σ0
A = Ω0

A = A.

Proof. Using (1.9) and (1.11) it suffices to show that N0
A = 0. By hypothesis, A satisfies Serre’s

conditions (R1) and (S2). By (R1), N0
A has support of codimension at least 2 (see [18, (5.7.3)]).

Let q ∈ SpecA with dimAq ≥ 2. By (S2) and Proposition 2.2, both Aq and ω0
A,q have depth

at least 2 (see [8, Prop. 1.4.1.(b).(ii)]). Then depthN0
A,q ≥ 1 by the Depth Lemma (see [8,

Prop. 1.2.9]) and hence q 6∈ AssN0
A. Thus, AssN0

A = ∅ and N0
A = 0 as claimed. �

In the hypersurface case, the inclusion ω0
Ã
↪→ ω0

A in diagram (2.5) corresponds to the inclu-

sion (0.3) using Corollary 2.3. This motivates the following

Definition 2.4. We say that A satisfies Saito’s normal crossing condition (SNCC) if ω0
Ã

= ω0
A.

By SNCC at p ∈ SpecA we mean that ω0
Ã,p

= ω0
A,p.

We first note that SNCC is a codimension-one condition.

Proposition 2.5. The equality ωp
Ã

= ωpA holds true if and only if it holds true in codimension

one. In particular, SNCC is a codimension-one condition.

Proof. Assume that the inclusion ωp
Ã
↪→ ωpA in diagram (2.5) is an equality at primes of codi-

mension 1; denote by W p
A its cokernel. Since W p

A is torsion, W p
A has support of codimension

at least 2. Let p ∈ SpecA with dimAp ≥ 2 and pick any q ∈ V (pÃ) ⊆ Spec Ã. In particular,

q∩A ⊇ p and hence dim Ãq = dimAq∩A ≥ dimAp ≥ 2 using (2.4). By Serre’s condition (S2) for

Ã then also depth Ãq ≥ 2. Thus, depthωp
Ã,q
≥ 2 by Proposition 2.2 (see [8, Prop. 1.4.1.(b).(ii)]).

It follows that (see [36, IV.B.1.Prop. 12] and [8, Prop. 1.2.10.(a)])

depthωp
Ã,p

= grade(p, ωp
Ã,p

) = grade(pÃ, ωp
Ã,p

) = min{depthωp
Ã,q
| q ∈ V (pÃ)} ≥ 2.

Since depthωpA,p ≥ 1 by diagram (1.10), the claim follows as in the proof of Corollary 2.3. �

Now we show that SNCC descends to any union of irreducible components. For any subset
I ⊆ {1, . . . , s}, set

(2.12) AI := A/aI , aI :=
⋂
i∈I

pi.
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Note that AI is reduced with minimal primes pi/aI , i ∈ I.

Proposition 2.6. If ωp
Ã

= ωpA then ωp
ÃI

= ωpAI
. In particular, SNCC descends from A to AI

for any subset I ⊆ {1, . . . , s}.

Remark 2.7. Proposition 2.6 plays the role of the inclusion

Ω1(log(D1 +D2)) ⊆ Ω1(logD)

for irreducible components D1 and D2 of a hypersurface D used in [13, Ex. 3.3].

The proof of Proposition 2.6 relies on the following two lemmas.

Lemma 2.8. For any subset I ⊆ {1, . . . , s}, we have ωpAI
= HomA(Ωr−pAI

, ωrA).

Proof. Let (1.1) be a Noether normalization of A; composed with A � AI it gives a Noether
normalization of AI . Using (1.3) and Hom-tensor-adjunction, we compute that

ωrAI
= HomR(AI , ω

r
R) = HomA(AI ,HomR(A,ωrR)) = HomA(AI , ω

r
A)

and hence that

ωpAI
= HomAI

(Ωr−pAI
, ωrAI

) = HomAI
(Ωr−pAI

,HomA(AI , ω
r
A)) = HomA(Ωr−pAI

, ωrA). �

Replacing A in (2.12) by Ã, p̃j =
∏
i 6=j Ãi, j = 1, . . . , s, are the minimal primes, ãI =

∏
i 6∈I Ãi

and

ÃI = Ã/ãI =
∏
i∈I

Ãi = ÃI .

Lemma 2.9. The natural surjections AI ⊗A ΩpA � ΩpAI
and AI ⊗A Ωp

Ã
� Ωp

ÃI
have torsion

kernels T p(AI/A) and T̃ p(AI/A), respectively.

Proof. By definition, T 0(AI/A) = 0 and T̃ 0(AI/A) is torsion by (2.2). In particular,

(2.13) AI ⊗A Ωp
Ã
� ÃI ⊗Ã Ωp

Ã

has torsion a kernel. By (2.2), aI/a
2
I is torsion and surjects onto T 1(AI/A) (see [21, Cor. 11.10]).

Therefore T p(AI/A) is torsion for all p ≥ 1 (see the proof of Proposition 2.1). Replacing A by

Ã also T p(ÃI/Ã) is torsion for all p ≥ 1. By the Snake Lemma applied to

0 // T̃ p(AI/A) //

��

AI ⊗A Ωp
Ã

//

����

Ωp
ÃI

// 0

0 // T p(ÃI/Ã) // ÃI ⊗Ã Ωp
Ã

// Ωp
ÃI

// 0,

T̃ p(AI/A) is an extension of the torsion kernel of (2.13) and T p(ÃI/Ã). �

Proof of Proposition 2.6. Using (1.3), Hom-tensor-adjunction, torsion-freeness of ωrA, Lemmas 2.9
and 2.8, we compute

HomA(AI , ω
p
A) = HomA(AI ,HomA(Ωr−pA , ωrA))(2.14)

= HomA(AI ⊗A Ωr−pA , ωrA)

= HomA(Ωr−pAI
, ωrA) = ωpAI

and similarly HomA(AI , ω
p

Ã
) = ωp

ÃI
. Thus, HomA(AI ,−) applied to the inclusion ωp

Ã
↪→ ωpA in

diagram (2.5) yields the corresponding with A replaced by AI . The claim follows. �
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Finally, we show that SNCC is compatible with analytic triviality.

Proposition 2.10. Assume that

A = A′⊗̂R′′,
where A′ satisfies the hypotheses on A, dimA′ = r − 1 and R′′ = k〈〈x〉〉 is regular. Then
ω0
A = ω0

A′⊗̂R′′. In particular, A satisfies SNCC if and only if A′ does.

Proof. Let (1.1) for A′ be a Noether normalization

(2.15) R′ = k〈〈x1, . . . , xr−1〉〉 ↪→ A′.

A Noether normalization and a normalization of A can be obtained by applying −⊗̂R′′ to (2.15)
and to (2.1) for A′ (see [14, III.§5]), that is,

R = R′⊗̂R′′ ↪→ A = A′⊗̂R′′ ↪→ Ã = Ã′⊗̂R′′.
This leads to decompositions (see [14, III.§5.10])

ΩrR = Ωr−1
R′ ⊗̂Ω1

R′′ , ΩrA = ΩrA′⊗̂R′′ ⊕ Ωr−1
A′ ⊗̂Ω1

R′′ ,

where Ω1
R′′ and ΩrR are free of rank 1 and ΩrA′ =

∧r
Ω1
A′ and hence ΩrA′⊗̂R′′ is torsion since

rk Ω1
A′ = dimA′ = r−1 (see [32, (8.8)]). Note that the analytic tensor products over R′, R′′ and

over A′, R′′ coincide due to finiteness of A′ over R′ (see [14, III.§5.10]). Using (1.3) and flatness
of R′ → R, we deduce

ω0
A = HomR(ΩrA,Ω

r
R)

= HomR′⊗̂R′′(Ω
r−1
A′ ⊗̂Ω1

R′′ ,Ωr−1
R′ ⊗̂Ω1

R′′)

= HomR′⊗R′R⊗R′′R′′(Ωr−1
A′ ⊗R′ R⊗R′′ Ω1

R′′ ,Ωr−1
R′ ⊗R′ R⊗R′′ Ω1

R′′)

= HomR′⊗R′R(Ωr−1
A′ ⊗R′ R,Ωr−1

R′ ⊗R′ R)

= HomR′(Ωr−1
A′ ,Ω

r−1
R′ ⊗R′ R)

= HomR′(Ωr−1
A′ ,Ω

r−1
R′ )⊗R′ R⊗R′′ R′′

= ω0
A′⊗̂R′′

and similarly ω0
Ã

= ω0
Ã′⊗̂R′′. It follows that the inclusions ω0

Ã′ ↪→ ω0
A′ and ω0

Ã
↪→ ω0

A correspond

via −⊗̂R′′ and −⊗R′′ k. �

3. Fractional ideals and ramification

Our approach to SNCC in case of curve and Gorenstein singularities uses that the inclusion
ωr
Ã
↪→ ωrA is given by the conductor ideal (see (4.2) and Lemma 5.1 below). With the latter we

recall the basics on fractional ideals.

Definition 3.1. A (regular) fractional ideal of A is an A-submodule M of L = Q(A) such that
there exist a, b ∈ Areg with aM ⊆ A and b ∈M .

Since A is Noetherian the first condition is equivalent to M being finitely generated. For any
two fractional ideals M,N ⊂ L of A one can identify

HomA(M,N) = N :L M ⊆ L, ϕ 7→ ϕ(m)

m
, m ∈M ∩Areg,

with a fractional ideal of A. The functor HomA(−,−) is inclusion-reversing (inclusion-preserving)
in the first (second) argument on fractional ideals of A. In particular, the dualizing operation

−−1 := Hom(−, A)
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is inclusion-reversing on fractional ideals of A. By (2.3), Q(A)p = Q(Ap) and localization at
p ∈ SpecA turns fractional ideals of A into fractional ideals of Ap. The localization of (2.1) at
p ∈ SpecA is the normalization

νA,p : Ap ↪→ Ãp = Ãp

of Ap (see [16, Prop. 2.1.6]). If M is a fractional ideal of A then

EndA(M) ⊆ Ã
by the determinantal trick (see [16, Lem. 2.1.8]). The conductor (ideal)

(3.1) CÃ/A := AnnA(Ã/A) = Ã−1

is the largest ideal of A which is also an ideal of Ã. Multiplying the denominators of a (finite) set

of A-module generators of Ã yields an element b ∈ Areg∩CÃ/A showing that CÃ/A is a fractional

ideal of A.
Both in case of curve and Gorenstein singularities the normalization will be unramified as a

consequence of SNCC (see Propositions 4.5 and 5.9 below). Denote by F iA(M) the ith Fitting
ideal of an A-module M . Then the ramification ideal of the normalization (2.1) is defined by

IÃ/A := F 0
Ã

(Ω1
Ã/A

).

Lemma 3.2. For any p ∈ SpecA,

(CÃ/A)p = CÃp/Ap
, (Ω1

Ã/A
)p = Ω1

Ãp/Ap
, (IÃ/A)p = IÃp/Ap

,

and following statements are equivalent:

(a) Ãp is unramified over Ap.
(b) Ω1

Ãp/Ap
= 0.

(c) IÃp/Ap
= Ãp.

In particular, Ω1
Ã/A

= 0 if and only if Ai = Ãi for i = 1, . . . , s.

Proof. By finiteness of Ã over A, the conductor (3.1) commutes with flat base change and Ω1
Ã/A

is the universal differential module which commutes with base change. Fitting ideals commute
with flat base change. The first claim and the equivalences follow (see [21, Prop. 6.8]). In

particular, Ω1
Ã/A

= 0 if and only if Ã is unramified over A. Since k = k, this is equivalent to

Ai/mAi = Ãi/mÃi
= Ãi/mAÃi = Ãi/mAiÃi

and hence to Ai = Ãi for i = 1, . . . , s by Nakayama’s Lemma. �

4. Curve singularities

Keeping all hypotheses of §2, we assume in addition that r = dimA = 1. Informally we refer
to A as a curve (singularity) with branches A1, . . . , As and we call it plane if

edimA := dimk(mA/m
2
A) ≤ 2.

By Serre’s normality criterion, the Ãi in (2.3) are regular and hence (see [14, II.§5.3])

Ãi = k〈〈ti〉〉.
We denote by e1, . . . , es ∈ Ã the primitive idempotents with Ãei = Ãi.

For curve singularities we characterize SNCC numerically in terms of the De Rham cohomol-
ogy of ωA and the δ-invariant of A

δA := dimk(Ã/A).
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Proposition 4.1. If A is a curve singularity then

dimkH
1(ωA) ≤ δA

with equality equivalent to SNCC.

Proof. We set λA := dimkN
0
A (see (1.9)). Then (see [20, (4.5) Satz]),

dimkH
1(ωA) = µA − λA + s− 1.

Using Milnor’s formula µA = 2δA − s+ 1 (see [9, Prop. 1.2.1.1)]) this gives

dimkH
1(ωA) = 2δA − λA.

By Corollary 2.3, the degree-0 part of the leftmost square in diagram (2.5) reads

Ã
c0
Ã

ω0
Ã� _

��

A �
� c0A //
?�

OO

ω0
A.

Thus, λA = δA + dimk(ω0
A/ω

0
Ã

) and the claim follows. �

Our goal is to show that the only curve singularities satisfying SNCC are plane normal cross-
ing. For convenience we extend this notion as follows. Denote the fiber product of the Ãi over
k by

A ↪→ Ã′ := Ã1 ×k · · · ×k Ãs ↪→ Ã.

Definition 4.2. We call a curve singularity A normal crossing if A = Ã′.

If A is normal crossing then mA = mÃ, Ai = Ãi for i = 1, . . . , s, edimA = s and

(4.1) CÃ/A =

{
A, if s = 1,

mA = mÃ, if s ≥ 2.

We will first investigate the Gorenstein property of normal crossing curve singularities using
the well-known results collected in the following lemma. The statement on regularity goes back
to Jacobinski in far greater generality (see [17]).

Lemma 4.3.

(a) A ⊆ m−1
A and, unless A is regular, m−1

A ⊆ Ã.

(b) A is Gorenstein if and only if dimk(m−1
A /A) = 1.

Proof.
(a) If m−1

A ( EndA(mA) then there is a surjection mA � A. Since A is projective it splits
and hence mA = xA⊕ I for some x ∈ Areg Then xI ⊆ xA ∩ I = 0 implies I = 0. It follows that
mA = 〈x〉 and A is regular.

(b) Any x ∈ mA ∩Areg induces an isomorphism

Ext1
A(k,A) ∼= HomA(k,A/xA) ∼= (xA :A mA)/xA m−1

A /A.∼=
·xoo �

Proposition 4.4. A normal crossing curve singularity is Gorenstein if and only if it is plane.

Proof. We may assume that A is singular, that is, s ≥ 2. By (4.1) and Lemma 4.3.(a), m−1
A = Ã

and hence
m−1
A /A ∼= (Ã/mÃ)/(A/mA) ∼= ks/k ∼= ks−1.

By Lemma 4.3.(b), A is therefore Gorenstein if and only if edimA = s ≤ 2. �
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We now give a characterization of SNCC for curve singularities. The proof relies on the
identity (see [23, Lem. 3.2])

(4.2) ωr
Ã

= CÃ/Aω
r
A.

We abbreviate Der := Derk to denote k-linear derivations.

Proposition 4.5. A curve singularity A satisfies SNCC if and only if

(a) A has regular branches, that is, Ai = Ãi for i = 1, . . . , s, and
(b) any k-derivation A→ ω1

A factors through ω1
Ã

, or equivalently,

Der(A) = Der(A,CÃ/A)

in case A is Gorenstein.

If A is Gorenstein and singular then (b) holds true if

(4.3) CÃ/A = mA

and conversely (b) implies (4.3) if in addition A is quasihomogeneous.

Proof. Recall from the proof of Proposition 2.1 that T 1(Ã/A) and Ω1
Ã/A

in (2.8) are torsion. So

dualizing the short exact sequence

0→ (Ã⊗A Ω1
A)/T 1(Ã/A)→ Ω1

Ã
→ Ω1

Ã/A
→ 0

obtained from (2.8) with the torsion-free module ω1
Ã

yields the following expansion of dia-

gram (2.11) in case r = 1 and p = 0.

(4.4) 0 // Der(A,ω1
Ã

) // Der(A,ω1
A)

0 // HomA(Ω1
A, ω

1
Ã

) // HomA(Ω1
A, ω

1
A)

ω0
Ã

ω0
A

0 // HomÃ(Ω1
Ã
, ω1

Ã
) // HomÃ(Ã⊗A Ω1

A, ω
1
Ã

) // Ext1
Ã

(Ω1
Ã/A

, ω1
Ã

) // 0

The upper inclusion comes from the universal property of Ω1
A. Its surjectivity is condition (b)

and reads Der(A) = Der(A,CÃ/A) for Gorenstein A due to (4.2). Since ω1
Ã

is a canonical module

of Ã by (1.3) and Ext1
Ã

(Ω1
Ã/A

, ω1
Ã

) is the dual of Ω1
Ã/A

(see [8, Thm. 3.3.10]), surjectivity of the

lower inclusion is equivalent to Ω1
Ã/A

= 0 and hence to condition (a) by Lemma 3.2. Therefore

the diagram proves the first claim.
The remaining claims are due to the following facts. If A is singular then CÃ/A ⊆ mA and

Der(A) ⊆ Der(A,mA) (see [35, (1.1)]). If A is quasihomogeneous then χ(A) = mA for some
Euler derivation χ ∈ Der(A,mA) (see [22] for a converse). �

Remark 4.6. Let A be a Gorenstein curve singularity.
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(a) Combining the degree-0 part of the leftmost square in diagram (2.5) with diagram (4.4)
using (1.11) and (4.2) yields commutative diagram

Ã
c0
Ã // ω0

Ã� _

��

� � // Der(A,CÃ/A)
� _

��

A �
� c0A //
?�

OO

ω0
A ∼=

// Der(A).

The image of the bottom row is the module ∆ of trivial derivations (see [23, §3] or [20, §5]).
Condition (b) in Proposition 4.5 can therefore be rephrased as

Der(A)/∆→ Der(A,A/CÃ/A)

being the zero map.
(b) Proposition 2.6 can be deduced from Proposition 4.5 as follows. It suffices to show that

condition (b) in Proposition 4.5 descends from A to AI for any subset I ⊆ {1, . . . , s}. By (2.3),
there is a commutative diagram

Ã
π̃I // // ÃI

A
?�

OO

πI // // AI
?�

OO

and any δI ∈ Der(AI) lifts to a δ ∈ Der(A) preserving aI . For xI ∈ AI , pick x ∈ A with
πI(x) = xI . Assuming δ(x) ∈ CÃ/A, we compute using 4.5.(b) for A that

δI(xI)ÃI = πI(δ(x))π̃I(Ã) = π̃I(δ(x)Ã) ⊆ π̃I(A) = AI

and hence δI(xI) ∈ CÃI/AI
which is 4.5.(b) for AI .

We now examine SNCC for normal crossing curve singularities.

Lemma 4.7. A normal crossing curve singularity satisfies condition (b) of Proposition 4.5 if
and only if it is plane.

Proof. The canonical module ω1
A of A is an ideal (see [8, Prop. 3.3.18]). With A = Ã′ also this

ideal is standard graded and thus isomorphic to A or to mA. Using Proposition 4.4, (4.2) and
(4.1), this implies that

ω1
A
∼=

{
A, if s ≤ 2,

mA, if s ≥ 3,
ω1
Ã

=

{
ω1
A, if s = 1,

mAω
1
A, if s ≥ 2.

If A is singular then Der(A) ⊆ Der(A,mA) (see [35, (1.1)]) and χ(A) = mA for some Euler
derivation χ ∈ Der(A,mA). Therefore condition (b) of Proposition 4.5 holds true if and only if
s ≤ 2. �

Our starting point for understanding SNCC for general curve singularities are two examples
that occur in the proof of the main theorem in [13].

Example 4.8.
(a) In [13, Ex. 3.3.(2)], A is a plane quasihomogeneous curve defined by a = 〈x2(x2 − xp1)〉

where p ≥ 1. Its normalization is given by x1 = (t1, t2), x2 = (0, tp2) and

CÃ/A = 〈(tp1, t
p
2)〉 = 〈xp1, x2〉.

By Proposition 4.5, A satisfies SNCC if and only if p = 1.
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(b) In [13, Ex. 3.3.(3)], A is the line arrangement defined by a = 〈x1x2(x1 − x2)〉. Its nor-
malization is given by x1 = (t1, 0, t3), x2 = (0, t2, t3) and

CÃ/A =
〈
(t21, t

2
2, t

2
3)
〉

=
〈
x2

1, x
2
2

〉
.

By Proposition 4.5, SNCC does not hold.
Both statements above are shown in loc. cit. by a different argument due to Saito.

Generalizations of Example 4.8 appear under the following conditions.

Lemma 4.9. Let A be a non-normal crossing curve singularity different from that in Exam-
ple 4.8.(a) with s ≥ 2 branches. Assume that AI is normal crossing for all I ⊂ {1, . . . , s} with
|I| = s− 1. Then A is the union of s− 1 ≥ 2 coordinate axes and a diagonal as defined by (4.7).
In particular, A is homogeneous and Gorenstein of embedding dimension n = edimA = s − 1
with conductor CÃ/A = m2

A.

Proof. With s ≥ 2 also n ≥ 2 and Ai = Ãi for i = 1, . . . , s. Set J := {1, . . . , s− 1}. Then AJ is
normal crossing but A is not. Thus, there is a commutative diagram with exact rows

0 // mAs
// Ã′ // Ã′J

// 0

0 // aJ
� ?

OO

// A
� ?

OO

// AJ // 0

in which the leftmost inclusion is strict. For any j ∈ J , both AJ and A{1,...,s}\{j} are normal
crossing. So there is an element xj ∈ mA inducing uniformizers of Aj and As but zero in mAi

for any i 6= j, s. Additional generators of A can be chosen from aJ ⊆ m2
As

. The inclusion A ⊆ Ã′
is then given by

(4.5) xi =

{
uitiei + vitses, i = 1, . . . , s− 1,

wit
pi
s es, i = s, . . . , n,

where the ui ∈ A∗i and the vi, wi ∈ A∗s are units, pi ≥ 2, and n ≥ s− 1. If n ≥ s, we may assume
that p := ps is minimal and replace ts to absorb ws. For i < s, we replace xi and ti to absorb
vi and ui. For i > s and j < s, we have

xi = wit
pi
s es = wit

pi−p
s tpses = wi(tjej + tses)(tjej + tses)

pi−ptpses = wi(xj)x
pi−p
j xs

which makes xi redundant.
So we may finally assume that ui = vi = wi = 1 and n ≤ s in (4.5). This leaves the following

two cases extending Example 4.8.

n = s ≥ 2, p ≥ 2, xi =

{
tiei + tses, i = 1, . . . , s− 1,

tpses, i = n,
(4.6)

n = s− 1 ≥ 2, xi = tiei + tses, i = 1, . . . , n.(4.7)

For n = 2, (4.6) and (4.7) define the curve singularities from parts (a) and (b) of Example 4.8,

respectively. For n ≥ 3, (4.6) reduces to (4.7) since xn = x1x
p−1
2 is redundant. Then Lemma 4.10

below concludes the proof. �

Lemma 4.10. The curve singularity A defined by (4.7) is homogeneous and Gorenstein.
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Proof. It follows from (4.7) that A = R/a is defined by a = 〈xk(xi − xj) | k 6= i, j〉, and hence

homogeneous, and that the conductor equals CÃ/A = m2
Ã

= m2
A. By Lemma 4.3.(a), m−1

A /A can

be seen as a subquotient in

m2
Ã

= CÃ/A ⊆ A ⊆ m−1
A ⊆ Ã.

Due to homogeneity of A this is a chain of standard graded ideals. Then with Ã/m2
Ã

also m−1
A /A

is non trivial at most in degrees 0 and 1. It follows from (4.7) that m−1
A and A have equal constant

parts. Setting t :=
∑s
i=1 tiei, we have t · xi = x2

i ∈ A for i = 1, . . . , n and hence t ∈ m−1
A \ A.

On the other hand, x1, . . . , xn, t is a k-basis of the linear part of Ã with x1, . . . , xn ∈ A. Thus, t
represents a k-basis of m−1

A /A and A is Gorenstein by Lemma 4.3.(b). �

We can finally show that SNCC characterizes plane normal crossings among all curve singu-
larities.

Proposition 4.11. A curve singularity satisfies SNCC if and only if it is plane normal crossing.

Proof. Plane normal crossing curve singularities are Gorenstein and therefore satisfy SNCC by
(4.1) and Proposition 4.5. Conversely, let A be a curve singularity with s branches satisfying

SNCC. If s = 1 then A = A1 = Ã1 = Ã′ by Proposition 4.5.(a). We now proceed by induction
on s assuming s ≥ 2. Due to Proposition 2.6 and the induction hypothesis, AI is normal crossing
for all I ⊂ {1, . . . , s} with |I| = s− 1. The only curve singularity in Example 4.8.(a) satisfying
SNCC is plane normal crossing. The conclusion of Lemma 4.9 contradicts to Proposition 4.5.
Therefore A must be normal crossing and hence plane by Lemma 4.7. �

5. Gorenstein singularities

Keeping all hypotheses of §2, we assume in addition that A is Cohen–Macaulay and Gorenstein
at p ∈ SpecA. By (1.3), ωrA is then a canonical module of A and hence (see [8, Thms. 3.3.5.(b),
3.3.7])

(5.1) ωrA,p = ωrAp
∼= Ap.

In particular, −−1 := HomAp
(−, Ap) corresponds to the duality HomAp

(−, ωrA,p) on maximal
Cohen–Macaulay modules.

Lemma 5.1. Let A be Cohen–Macaulay and Gorenstein at p ∈ SpecA. Then

ωr
Ã,p

= CÃp/Ap
ωrA,p

∼= CÃp/Ap
.

Proof. Let (1.1) be a Noether normalization. By (1.3) and Hom-tensor-adjunction,

ωr
Ã

= HomR(Ã,ΩrR) = HomA(Ã,HomR(A,ΩrR)) = HomA(Ã, ωrA).

By finiteness of Ã over A and (5.1), localization at p turns this into

ωr
Ã,p

= HomAp
(Ãp, ω

r
A,p) = HomAp

(Ãp, Ap)ωrA,p = CÃp/Ap
ωrA,p. �

Definition 5.2. The Jacobian and ω-Jacobian (ideal) of A are defined by

(5.2) JA := F rA(Ω1
A), J ′A := Ann coker crA = im(crA ⊗ (ωrA)−1).

The ideals in (5.2) satisfy inclusion relations (see [26, Prop. 3.1])

(5.3) JA ⊆ J ′A ⊆ CÃ/A.

The second inclusion is due to Lemma 5.1 and the degree-r part of the leftmost square in
diagram (2.5).
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Remark 5.3. Since Ω1
A has rank r (see [32, (4.4)]), JA,pi

= F rApi
(Ω1

A,pi
) = Api

for i = 1, . . . , s

and JA contains a regular element of A by prime avoidance. It follows that both JA and J ′A are
fractional ideals of A. In case of J ′A this follows also from cA being an isomorphism at regular
primes of A (see [18, (5.7.3)]) and Serre’s reducedness criterion. If A is a complete intersection
then JA = J ′A (see [33, Lem. 3.1] or [27, Prop. 1] and [26, Prop. 3.2] for a converse).

The statement of [13, Prop. 3.4] for hypersurface singularities generalizes by replacing the
Jacobian by the ω-Jacobian.

Lemma 5.4. Let A be Cohen–Macaulay and Gorenstein at p ∈ SpecA. Then

σ0
A,p = (J ′A,p)−1

as fractional ideals of Ap.

Proof. We use (1.6) to identify ωA with σA. By (5.2) and the Gorenstein hypothesis this turns
crA,p into a map ΩrA,p � J ′A,pσ

r
A,p with torsion cokernel. Then (1.7) localized at p becomes

σ0
A,p = HomA,p(J ′A,pσ

r
A,p, σ

r
A,p) = (J ′A,p)−1. �

Definition 5.5. We call A free at p ∈ SpecA if A is Cohen–Macaulay, Ap is Gorenstein and
J ′A,p is a Cohen–Macaulay ideal. We say that A is free if it is free at mA.

The Aleksandrov–Terao theorem (see [1, §2 Thm.] and [38, Prop. 2.4]) generalizes as follows.

Proposition 5.6. Let A be Cohen–Macaulay and Gorenstein at p ∈ SpecA. Then freeness of
A at p with Ap 6= J ′A,p is equivalent to Ap/J

′
A,p being Cohen–Macaulay of dimension dimAp−1.

Proof. By Remark 5.3, J ′A,p ( Ap is a fractional ideal of Ap (see §3). In particular, it contains

an element of Areg
p \ A∗p and hence ht J ′A,p ≥ 1. The claim follows (see [15, Satz 4.13] and [8,

Thm. 2.1.2.(a)]). �

By (5.3), (3.1), Corollary 2.3, and Propositions 2.1, there is an ascending chain of fractional
ideals

(5.4) J ′A ⊆ CÃ/A ⊆ A ⊆ Ã = σ0
Ã
⊆ σ0

A.

We deduce the following generalization of [13, Cor. 3.7].

Corollary 5.7. Let A be Cohen-Macaulay and free at p ∈ SpecA. Then A satisfies SNCC at p
if and only if J ′A,p = CÃp/Ap

.

Proof. By reflexivity of Ã (see [13, Lem. 2.8]), (3.1) and Lemma 5.4, the first and last inclusions
in (5.4) localized at p ∈ SpecA are duals of each other. �

We recall an identity of ideals due to Piene (see [27, Cor. 1]) in case of a smooth normalization.

Lemma 5.8. Let A be Cohen–Macaulay and let p ∈ SpecA such that Ap is Gorenstein and Ãp

is regular. Then IÃp/Ap
CÃp/Ap

= ÃJ ′A,p.

Proof. Since Ãp is regular, Ω1
Ã,p

is locally free of rank r (see [32, (4.4),(8.7)]). The map Ã⊗ dνA
from (2.8) is a presentation of Ω1

Ã/A
. Using Lemma 3.2, it follows that IÃp/Ap

Ωr
Ã,p

is the image

of the map

Ã⊗
r∧
dνA,p : Ã⊗A ΩrA,p → Ωr

Ã,p
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obtained by localizing the map Ã⊗
∧r

dνA from (2.9) at p. Together with the degree-r part of
the leftmost square in diagram (2.5) localized at p this map fits into a commutative diagram

Ωr
Ã,p

cr
Ã,p

∼=
// ωr
Ã,p� _

��

ΩrA,p

zzttttttttt

crA,p
//

∧r dνA,p

OO

ωrA,p

Ã⊗A ΩrA,p

Ã⊗
∧r dνA,p

CC���������������� Ã⊗crA,p

55kkkkkkkkkkkkkkkk

where cr
Ã,p

is an isomorphism since Ãp is regular (see [18, (5.7.3)]). Using Lemma 5.1 and (5.1)

it follows that

IÃp/Ap
CÃp/Ap

ωrA,p = IÃp/Ap
ωr
Ã,p

= im
(
cr
Ã,p
◦ Ã⊗

r∧
dνA,p

)
= im(Ã⊗ crA,p) = Ã im crA,p = ÃJ ′A,pω

r
A,p.

The claim follows by (5.1). �

The following result generalizes [13, Lem. 4.2].

Proposition 5.9. Let A be Cohen–Macaulay and free at p ∈ SpecA such that Ãp is regular.

Then A satisfies SNCC at p if and only if J ′A,p is an ideal of Ãp and Ãp is unramified over Ap.

Proof. By Lemma 5.1, (1.12) and regularity of Ãp (see [18, (5.7.3)]),

CÃp/Ap

∼= ωr
Ã,p
∼= Ωr

Ã,p
=

r∧
Ω1
Ã,p

is locally free of rank 1 (see [32, (4.4),(8.7)]). By Corollary 5.7, SNCC for A at p is equivalent

to J ′A,p = CÃp/Ap
. By Lemma 5.8, this is equivalent to ÃpJ

′
A,p = J ′A,p and IÃp/Ap

= Ãp. The

claim follows using Lemma 3.2. �

6. Complex analytic spaces

In order to consider analytic spaces, we need in addition to the hypotheses of §2 that k is
non-discretely valued. Therefore we assume that k = C and consider (germs of) complex analytic
spaces.

LetX be a reduced r-equidimensional complex analytic space with normalization νX : X̃ → X.
Then there is an OX -coherent graded (ΩX , d)-module ωX and a trace map cX : ΩX → ωX (see
[7]). The Jacobian and ω-Jacobian (ideals) JX and J ′X of X are defined as in (5.2). Taking stalks
at x ∈ X leads to the corresponding objects for A = OX,x. By a complex analytic singularity we
mean the germ of a complex analytic space.

Definition 6.1. We say that a reduced equidimensional complex analytic space X satisfies
Saito’s normal crossing condition (SNCC) or that X is free if A = OX,x satisfies the correspond-
ing property for all x ∈ X (see Definition 2.4 and Definition 5.5). We say that X satisfies a
property in codimension (up to) c if it does outside of an analytic subset of codimension at least
c + 1. We define the corresponding properties for complex analytic singularities by requiring
them for some representative.
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Remark 6.2. That X satisfies SNCC means that the inclusion of coherent OX -modules
(νX)∗ω

0
X̃
↪→ ω0

X is an equality (see [7, p.195, Ex. i)]). In particular, SNCC is an open con-
dition.

Freeness is an open condition as well. In fact, Cohen–Macaulay loci of coherent OX -modules
are open (see [31, Satz 7]) and the Gorenstein locus of a Cohen–Macaulay X is the open set
where the coherent OX -module ωrX is locally free of rank 1 (see [8, Thm. 3.3.7.(a)]).

Both SNCC and freeness are satisfied in codimension 0, that is, generically.

The following is the analytic version of Proposition 2.5.

Proposition 6.3. A reduced equidimensional complex analytic singularity X satisfies SNCC if
it does in codimension one.

Proof. Assume that X satisfies SNCC in codimension one and replace X by a representative.
Let x ∈ X and set A := OX,x. Consider the coherent OX -module F = ω0

X/(νX)∗ω
0
X̃

and

the coherent OX -ideal I = Ann F . By hypothesis and Remark 6.2, V (I ) = Supp F and
hence V (Ix) has codimension at least 2. In particular, for any p ∈ SpecA with ht p = 1,
Ann(Fx) = Ix 6∈ p and hence ω0

A,p/ω
0
Ã,p

= (Fx)p = 0. In other words, A satisfies SNCC in

codimension one. Then OX,x = A satisfies SNCC due to Proposition 2.5. This means that X
satisfies SNCC at x. Therefore X satisfies SNCC as claimed. �

In case of smooth irreducible components our results from §4 apply to a transversal curve
singularity.

Proposition 6.4. Let X be a reduced equidimensional complex analytic singularity with smooth
local irreducible components in codimension one. If X satisfies SNCC then it must be a normal
crossing divisor in codimension one.

Proof. Set r := dimX and denote by m := n − r the codimension of X in some smooth
ambient space (Cn, 0). We may freely move the base point of the germ X to a general point
in codimension one. Let Z be the reduced singular locus of X. We may assume that Z 6= ∅ is
smooth of codimension one and that the irreducible components X1, . . . , Xs of X are smooth
containing Z. By Proposition 2.6, SNCC descends to any union of irreducible components of X.
We may therefore assume that 2 ≤ s ≤ 3 and that X1 ∪ · · · ∪Xs−1 is a normal crossing divisor.
Then there are local coordinates such that

Z = {x1 = · · · = xm+1 = 0},(6.1)

Xi = {x1 = · · · = x̂i = · · · = xm+1 = 0}, i = 1, . . . , s− 1.

By the implicit function theorem, there is a j ∈ {1, . . . ,m+ 1} such that

Xs = {xi = yi(xj , xm+2, . . . , xn) | j 6= i = 1, . . . ,m+ 1}.
If yi 6= 0 then we may write yi = xpij ui with ui(0, xm+2, . . . , xn) 6= 0. We may then assume

that the latter and hence also ui is a unit. Dividing xi by ui results in ui = 1 leaving (6.1)
unchanged. This makes the defining equations of X1, . . . , Xs, and hence of X, independent of
xm+2, . . . , xn. Then X becomes a product X = C × Z where C is a curve in the transversal
slice {xm+2 = · · · = xn = 0}. By Proposition 2.10, with X also C satisfies SNCC. Then
Proposition 4.11 forces C to be plane normal crossing. In particular, s = 2 and X is a normal
crossing divisor. �

Example 6.5. The free divisor D = {xy(x+ y)(x+ xz) = 0} has smooth reduced singular locus
Z = {x = y = 0} and 4 smooth local irreducible components at points of Z. However it is not
analytically trivial along Z in codimension one.
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We are finally ready to prove our main result.

Proof of Theorem 0.1. Suppose first that X satisfies SNCC. By Proposition 6.3, SNCC for X is
a codimension-one condition. We may therefore assume that X is free and that X̃ is smooth.
Proposition 5.9 then implies that νX is unramified. By Lemma 3.2 this means that X has smooth
local irreducible components. Proposition 6.4 then forces X to be a normal crossing divisor in
codimension one. The converse implication follows from Propositions 2.10, 4.11, and 6.3. �

We conclude with an application of our approach to splayed divisors. By a divisor we mean
a reduced hypersurface singularity. Let D1, D2 ⊂ (Cr+1, 0) be divisors. Then D1 and D2 are
called splayed (see [12]) if

D1
∼= D′1 × (Cr2+1, 0), D2

∼= (Cr1+1, 0)×D′2.

for divisors D′i ⊂ (Cri+1, 0) for i = 1, 2 under some isomorphism (Cr+1, 0) ∼= (Cr1+1, 0) ×
(Cr2+1, 0). In this case we call the union D1 ∪ D2 a splayed divisor. In other words, splayed
divisors are product unions

D′1 ∪× D′2 := D′1 × (Cr2+1, 0) ∪ (Cr1+1, 0)×D′2
of divisors (see [10, §3]). Aluffi and Faber characterized splayedness in terms of logarithmic
differential forms (see [6, Thm. 2.12]). Passing to the residual part of these forms yields a
characterization in terms of regular differential forms.

Proposition 6.6. Let Di = V (hi) ⊆ (Cr+1, 0) for i = 1, 2 be divisors. If D1 and D2 are splayed
then the natural map

(6.2) ω0
D1tD2

= ω0
D1
⊕ ω0

D2
→ ω0

D

is an isomorphism. The converse holds true if D = D1 ∪D2 is free.

Proof. The map in (6.2) is obtained using (2.14) by applying HomOD
(−, ω0

D) to the inclusion

(6.3) OD1tD2 = OD1 × OD2 ←↩ OD.

If D1 and D2 have a common irreducible component D′, which is not the case if they are are
splayed, then applying HomOD

(−, ω0
D) to the commutative diagram

OD1
× OD2

����

OD

����

? _oo

OD′ × OD′ OD′
(id,id)
oo

and using (2.14) yields a commutative diagram

ω0
D1
⊕ ω0

D2

// ω0
D

ω0
D′ ⊕ ω0

D′

?�

OO

+
// ω0
D′

?�

OO

whose top row is (6.2). As ω0
D′ 6= 0 this shows that (6.2) is not injective in this case. Therefore

we may assume that D1 and D2 do not have a common irreducible component. Then (6.3) has
a torsion cokernel and (6.2) is an inclusion since ω0

D is torsion-free.
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As in Proposition 2.1 there is a commutative diagram

(6.4) σ0
D1
⊕ σ0

D2

� � //

∼=
��

σ0
D

∼=
��

ω0
D1
⊕ ω0

D2

� � // ω0
D.

In fact, using (1.17) and (6.3) one computes that

cD1 + cD2 =

[
dh1

h1

]
+

[
dh2

h2

]
7→
[
h2dh1 + h1dh2

h1h2

]
=

[
d(h1h2)
h1h2

]
= cD

by the lower inclusion in (6.4). By [6, Thm. 2.2], D1 and D2 are splayed if and only if the natural
inclusion of Jacobian ideals

(6.5) JD ↪→ h2JD1
⊕ h1JD2

is an equality. Lemma 5.4 identifies the upper inclusion in (6.4) as the dual of (6.5) and the first
claim follows. Indeed, dualizing OD1

= OD/h1OD over OD yields

HomOD
(OD1

,OD) = ker(h1 : OD → OD) = h2OD = h2OD1

and hence by Hom-tensor-adjunction

HomOD
(−,OD) = HomOD1

(−,HomOD
(OD1

,OD)) = h2 HomOD1
(−,OD1

)

on OD1
-modules. Conversely, if D is free then JD is reflexive and hence

(σ0
D)−1 = JD ↪→ h2JD1 ⊕ h1JD2 ↪→ h2 · (σ0

D1
)−1 ⊕ h1 · (σ0

D2
)−1 = (σ0

D1
⊕ σ0

D2
)−1.

Thus, dualizing an equality in (6.4) yields an equality in (6.5). �

Remark 6.7. If the divisors D1 and D2 have no common irreducible component then

D̃ � D1 tD2 � D

and condition (6.2) can be seen as a weak form of SNCC.
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