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ON THE TOPOLOGY OF A RESOLUTION OF ISOLATED SINGULARITIES

VINCENZO DI GENNARO AND DAVIDE FRANCO

Abstract. Let Y be a complex projective variety of dimension n with isolated singularities,

π : X → Y a resolution of singularities, G := π−1Sing(Y ) the exceptional locus. From the
Decomposition Theorem one knows that the map Hk−1(G) → Hk(Y, Y \Sing(Y )) vanishes

for k > n. Assuming this vanishing, we give a short proof of the Decomposition Theorem
for π. A consequence is a short proof of the Decomposition Theorem for π in all cases where

one can prove the vanishing directly. This happens when either Y is a normal surface, or

when π is the blowing-up of Y along Sing(Y ) with smooth and connected fibres, or when
π admits a natural Gysin morphism. We prove that this last condition is equivalent to

saying that the map Hk−1(G) → Hk(Y, Y \Sing(Y )) vanishes for all k, and that the pull-back

π∗
k : Hk(Y ) → Hk(X) is injective. This provides a relationship between the Decomposition

Theorem and Bivariant Theory.

1. Introduction

Consider an n-dimensional complex projective variety Y with isolated singularities. Fix a
desingularization π : X → Y of Y . This paper is addressed at the study of some topological
properties of the map π. In a previous paper [14], we already observed that, even though π is
never a local complete intersection map, in some very special cases it may nonetheless admit a
natural Gysin morphism. By a natural Gysin morphism, we mean a topological bivariant class
[20, §7], [7]

θ ∈ T 0(X
π→ Y ) := HomDb(Y )(Rπ∗QX ,QY ),

commuting with restrictions to the smooth locus of Y (here and in the following Db(Y ) denotes
the bounded derived category of sheaves of Q-vector spaces on Y ).

In this paper, we give a complete characterization of morphisms like π admitting a natural
Gysin morphism by means of the Decomposition Theorem [2], [6], [8], [9]. In some sense, what we
are going to prove is that π admits a natural Gysin morphism if and only if Y is a Q-intersection
cohomology manifold, i.e., IC•Y ' QY [n] in Db(Y ) (IC•Y denotes the intersection cohomology
complex of Y [17, p. 156], [27]). Furthermore, in this case, there is a unique natural Gysin
morphism θ, and it arises from the Decomposition Theorem (compare with Theorem 1.2 below).

The Decomposition Theorem is a beautiful and very deep result about algebraic maps. In
the words of MacPherson, “it contains as special cases the deepest homological properties of
algebraic maps that we know”[26], [34]. As observed in [34, Remark 2.14], since the proof of the
Decomposition Theorem proceeds by induction on the dimension of the strata of the singular
locus, a key point is the case of varieties with isolated singularities:
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Theorem 1.1 (The Decomposition Theorem for varieties with isolated singularities). In Db(Y ),
we have a decomposition

Rπ∗QX ∼= IC•Y [−n]⊕H•,
where H• is quasi-isomorphic to a skyscraper complex on Sing(Y ). Furthermore, we have

(1) Hk(H•) ∼= Hk(G), for all k ≥ n,
(2) Hk(H•) ∼= H2n−k(G), for all k < n,

where G := π−1(Sing(Y )), and Hk(G) and H2n−k(G) have Q-coefficients.

The relationship between the Gysin morphism and the Decomposition Theorem is closely
related to an important topological property of the morphism π. Specifically, in [22] and [32]
one proves that Theorem 1.1 implies the following vanishing

(1) Hk−1(G)→ Hk(Y,U) vanishes for k > n,

where U = Y \Sing(Y ).

One of the main points we would like to stress in this paper (compare with Theorem 3.1) is
that

the vanishing (1) is equivalent to the Decomposition Theorem.

More precisely, what we are going to do in this paper is to prove that assuming (1), one can
prove Theorem 1.1 in few pages. Actually this equivalence is already implicit in the argument
developed by Navarro Aznar in order to prove [30, (6.3) Corollaire, p. 293]. In fact, after
proving (1) using Hodge Theory, Navarro Aznar proves the relative Hard Lefschetz Theorem
and observes that the Decomposition Theorem follows from Deligne’s results on degeneration of
spectral sequences. Instead, here we give a simpler and more direct proof, avoiding the use of
the relative Hard Lefschetz Theorem. In fact, we deduce the splitting in derived category from
a simple result concerning short exact sequences of complexes (compare with Lemma 4.7).

A byproduct of our result is a short proof of the Decomposition Theorem in all cases where one
can prove the vanishing (1) directly. This happens when either 2 dimG < n (for trivial reasons),
or when Y is a normal surface in view of Mumford’s theorem [23], [29], or when π : X → Y is
the blowing-up of Y along Sing(Y ) with smooth and connected fibres (see Remark 5.1). It is
worth remarking that if Y is a locally complete intersection variety, then Milnor’s theorem on the
connectivity of the link [16] implies (via Lemma 4.1 below) that the map Hk−1(G)→ Hk(Y,U)
vanishes for all k ≥ n + 2. Therefore, in this case the question reduces to check that the map
Hn(G) → Hn+1(Y,U) vanishes. This in turn is equivalent to require that Hn(G), which is
contained in Hn(X) via push-forward, is a nondegenerate subspace of Hn(X) with respect to
the natural intersection form Hn(X) × Hn(X) → H0(X) (see Remark 5.1, (i)). Another case
is when π admits a natural Gysin morphism. Indeed, in this case it is very easy to prove the
stronger property

Hk−1(G)→ Hk(Y, U) vanishes for k > 0.

This is the real reason why in our approach the same argument leads to both Theorem 1.1
and the following:

Theorem 1.2. There exists a natural Gysin morphism for π if and only if Y is a Q-intersection
cohomology manifold. In this case, in Db(Y ) we have a decomposition

Rπ∗QX ∼= IC•Y [−n]⊕H• ∼= QY ⊕
⊕
k≥1

Rkπ∗QX [−k].
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Moreover, a natural Gysin morphism is unique, and, up to multiplication by a nonzero rational
number, it comes from the decomposition above via projection onto QY .

For a more precise and complete statement see Theorem 3.2 and Remark 3.3 below. For
instance, from Theorem 3.2, (ix), we deduce that a natural Gysin morphism exists when Y is
nodal of even dimension n, or when Y is a cone over a smooth basis M with H•(M) ∼= H•(Pn−1).
We stress that the existence of a natural Gysin morphism forces the exceptional locus G to have
dimension 0 or n− 1 (see Remark 6.1).

Last but not least, we have been led to consider the issues addressed in this paper by our
previous work on Noether-Lefschetz Theory. We refer to the papers [10], [11], [12], [13] anyone
interested in the overlaps between the topological properties investigated here and the Noether-
Lefschetz Theorem (specifically, we made an heavy use of the Decomposition Theorem in [12,
Remark 3 and Theorem 6, (6.3), p. 169], and in [13, Theorem 2.1, proof of (a), p. 262]).

2. Notations

(i) Let Y be a complex irreducible projective variety of dimension n ≥ 1, with isolated
singularities. Let π : X → Y be a resolution of the singularities of Y . For all y ∈ Sing(Y ), set
Gy := π−1(y). Set G :=

⋃
y∈Sing(Y )Gy = π−1(Sing(Y )). Let i : G ↪→ X be the inclusion.

(ii) All cohomology and homology groups are with Q-coefficients. For a function f : A → B
we denote by =(f) the image of f , i.e., =(f) = f(A).

(iii) Set U := Y \Sing(Y ) ∼= X\G. Denote by α : U ↪→ Y and β : U ↪→ X the inclusions. For
all k we have the following natural commutative diagram:

(2)
Hk(Y )

π∗k−→ Hk(X)
α∗k↘ ↙β∗k

Hk(U)

where all the maps denote pull-back.

Remark 2.1. From the commutativity of (2) we deduce =(α∗k) ⊆ =(β∗k). Since Hk(Y ) ∼= Hk(X)
for k ≤ 0 or k ≥ 2n, we have =(α∗k) = =(β∗k) for k ≤ 0 or k ≥ 2n. It may happen that
=(α∗k) 6= =(β∗k). We may interpret the condition =(α∗k) = =(β∗k) as follows. Combining the
Universal Coefficient Theorem with the Lefschetz Duality Theorem [31, p. 248 and p. 297] we
have Hk(U) ∼= H2n−k(Y,Sing(Y )) for all k. Since Sing(Y ) is finite, we also have

H2n−k(Y ) ∼= H2n−k(Y,Sing(Y ))

for k ≤ 2n− 2, and H1(Y ) ⊆ H1(Y,Sing(Y )). Therefore, for k ≤ 2n− 2, (2) identifies with the
diagram:

Hk(Y ) −→ H2n−k(X)
↘ ↙

H2n−k(Y )

where the map Hk(Y ) → H2n−k(X) is the composite of Poincaré Duality Hk(X) ∼= H2n−k(X)
with the pull-back π∗k, the map H2n−k(X) → H2n−k(Y ) is the push-forward, and the map

Hk(Y )
· ∩[Y ]−→ H2n−k(Y ) is the duality morphism, i.e., the cap-product with the fundamental class

[Y ] ∈ H2n(Y ) [28]. It follows that =(α∗k) = =(β∗k) if and only if every cycle in H2n−k(Y ) coming
from H2n−k(X) via push-forward is the cap-product of a cocycle in Hk(Y ) with the fundamental
class [Y ]. This holds true also for k = 2n− 1 because H1(Y ) ⊆ H1(Y, Sing(Y )) ∼= H2n−1(U).
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(iv) Embed Y in some projective space PN . For all y ∈ Sing(Y ) choose a small closed ball
Sy ⊂ PN around y, and set By := Sy∩Y , Dy := π−1(By), B :=

⋃
y∈Sing(Y )By, and D := π−1(B).

By is homeomorphic to the cone over the link ∂By of the singularity y ∈ Y , with vertex at y
[16, p. 23]. By is contractible, by excision we have

Hk(Y,U) ∼= Hk(B,B\Sing(Y )) ∼= Hk(B, ∂B)

for all k, and from the cohomology long exact sequence of the pair (B, ∂B) we get

Hk(Y, U) ∼= Hk−1(∂B)

for all k ≥ 2. We have ∂D ∼= ∂B via π, and by excision we have

Hk(X,U) ∼= Hk(D,D\G) ∼= Hk(D, ∂D)

for all k [17, p. 38]. Since G is homotopy equivalent to D, we have Hk(G) ∼= Hk(D). Putting
everything together, from the cohomology long exact sequence of the pair (D, ∂D) we get the
following exact sequence

(3) Hk(X,U)→ Hk(G)→ Hk+1(Y,U)
γ∗k+1→ Hk+1(X,U)

for all k ≥ 1, where γ∗k+1 denotes the pull-back. Observe that since Sing(Y ) is finite, we have

Hk(G) = ⊕y∈Sing(Y )H
k(Gy), Hk(B) = ⊕y∈Sing(Y )H

k(By), Hk(∂B) = ⊕y∈Sing(Y )H
k(∂By).

Remark 2.2. Assume that Y is a locally complete intersection variety. From the connectivity
of the link [16, Milnor’s theorem p. 76, and Hamm’s theorem p. 80], it follows that the duality
morphism Hk(Y ) → H2n−k(Y ) is an isomorphism for all k /∈ {n − 1, n, n + 1}, is injective for
k = n − 1, and is surjective for k = n + 1. In particular =(α∗k) = =(β∗k) for all k /∈ {n − 1, n}.
In order to prove this property, we argue as follows. We may assume 0 < k < 2n and n ≥ 2.
From the cohomology long exact sequence of the pair (Y, U) we have:

(4) . . .→Hk(Y,U)→ Hk(Y )→ Hk(U)→ Hk+1(Y, U)→ . . . ,

and by excision Hk(Y, U) ∼= Hk(B, ∂B). Taking into account that each By is contractible and
that ∂By is path connected [16, loc. cit.], from the cohomology long exact sequence of the pair
(B, ∂B) we get H1(B, ∂B) = 0 and Hk(B, ∂B) ∼= Hk−1(∂B) for k ≥ 2. Since

Hk(U) ∼= H2n−k(Y,Sing(Y )),

and H2n−k(Y ) ∼= H2n−k(Y, Sing(Y )) for k ≤ 2n − 2, from (4) we get the exact sequence for
k /∈ {1, 2n− 1} (compare with [15, p. 5]):

Hk−1(∂B)→ Hk(Y )→ H2n−k(Y )→ Hk(∂B).

Each ∂By is (n− 2)-connected by Milnor’s theorem [16, loc. cit.], and it is a compact oriented
real manifold of dimension 2n− 1, in particular hk(∂By) = h2n−1−k(∂By) by Poincaré Duality
[16, p. 91]. It follows that the map Hk(Y )→ H2n−k(Y ) is an isomorphism for

k /∈ {1, n− 1, n, n+ 1, 2n− 1}.
As for the case k = 1 6= n− 1, this follows from (4) because

H1(Y,U) ∼= H1(B, ∂B) = 0,

H1(U) ∼= H2n−1(Y,Sing(Y )) ∼= H2n−1(Y ), and H2(Y, U) ∼= H2(B, ∂B) ∼= H1(∂B) = 0 by
connectivity of the link. When k = 2n− 1 6= n+ 1, we have

H2n−1(Y,U) ∼= H2n−1(B, ∂B) = H2n−2(∂B) = 0.

Thus, H2n−1(Y ) ↪→ H2n−1(U). On the other hand H1(Y ) ↪→ H1(Y,Sing(Y )) ∼= H2n−1(U). It
follows that the duality morphism H2n−1(Y ) → H1(Y ) is injective. Then it is an isomorphism
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because we have just seen, in the case k = 1, that h1(Y ) = h2n−1(Y ). Finally notice that, when
n ≥ 3, from previous analysis and (4) we get the exact sequence:

0→ Hn−1(Y )→ Hn+1(Y )→ Hn−1(∂B)→ Hn(Y )→ Hn(Y )

→ Hn(∂B)→ Hn+1(Y )→ Hn−1(Y )→ 0.

Therefore, the duality morphism

Hn−1(Y )→ Hn+1(Y )

is injective, and the map Hn+1(Y ) → Hn−1(Y ) is onto. This holds true also when n = 2.
In fact, also in this case we have H1(B, ∂B) = 0, which implies that the duality morphism
H1(Y ) → H3(Y ) is injective. Moreover, a similar analysis as before shows that the image of
H3(Y ) and H1(Y ) have the same codimension in H3(U). Thus, they are equal. This concludes
the proof of the claim.

(v) By [31, Lemma 14, p. 351] we have Hk(X,U) ∼= H2n−k(G). Therefore, from the coho-
mology long exact sequence of the pair (X,U) we get a long exact sequence:

(5) . . .→Hk−1(U)→ H2n−k(G)→ Hk(X)
β∗k→ Hk(U)→ . . . .

(vi) For all y ∈ Sing(Y ) set:

Hk
y :=

{
Hk(Gy) if k ≥ n
H2n−k(Gy) if k < n.

Let Hky be the skyscraper sheaf on Y with stalk at y given by Hk
y . Set Hk := ⊕y∈Sing(Y )H

k
y and

Hk := ⊕y∈Sing(Y )Hky . We consider H• as a complex of sheaves on Y with vanishing differentials

dkH• = 0.

Remark 2.3. From the Universal Coefficient Theorem [31, p. 248 ] it follows that the Q-vector
spaces Hn−k and Hn+k are isomorphic for all k. This implies that H•[n] is self-dual, i.e., in
the bounded derived category Db(Y ) of Y we have H•[n] ∼= D(H•[n]). Taking into account that
in H•[n] all the differentials vanish, to prove that H•[n] is self-dual it suffices to prove that the
complexes H•[n] and D(H•[n]) have isomorphic sheaf cohomology. Since H•[n] is supported on
a finite set, this amounts to prove that H•[n] and D(H•[n]) have isomorphic hypercohomology,
i.e., that

Hk(H•[n]) ∼= Hk(D(H•[n]))

for all k. But by Poincaré-Verdier Duality [17, p. 69, Theorem 3.3.10] we have:

Hk(D(H•[n])) ∼= H−k(H•[n])∨ ∼= Hn−k(H•)∨ ∼= (Hn−k)∨ ∼= Hn+k ∼= Hk(H•[n]).

(vii) We say that a graded morphism θ• : H•(X) → H•(Y ) is natural if for all k one has
θk ◦ π∗k = idHk(Y ), and the following diagram commutes [14]:

Hk(Y )
θk←− Hk(X)

α∗k↘ ↙β∗k

Hk(U),

i.e., α∗k ◦ θk = β∗k .

Remark 2.4. The existence of a natural graded morphism θ• : H•(X) → H•(Y ) is equivalent
to saying that, for all k, the pull-back π∗k : Hk(Y ) → Hk(X) is injective and =(α∗k) = =(β∗k)
(compare with the proof of (i) =⇒ (ii) in Theorem 3.2 below).
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(viii) We say that a (topological) bivariant class θ ∈ HomDb(Y )(Rπ∗QX ,QY ) is natural if the
induced graded morphism θ• : H•(X)→ H•(Y ) is natural [14], [20].

Remark 2.5. Fix a bivariant class

θ ∈ H0(X
π→ Y ) ∼= HomDb(Y )(Rπ∗QX ,QY ).

Let θ0 : H0(X)→ H0(Y ) be the induced map. Let q ∈ Q be such that

θ0(1X) = q · 1Y ∈ H0(Y ) ∼= Q

[31, p. 238]. Put

deg θ := q.

For all k and all c ∈ Hk(Y ), by the projection formula [20, (G4), (i), p. 26], and [31, 9, p. 251],
we have :

(6) θk(π∗k(c)) = θk(1X ∪ π∗k(c)) = θ0(1X) ∪ c = deg θ · (1Y ∪ c) = deg θ · c.

It follows that for all k one has:

(7) θk ◦ π∗k = deg θ · idHk(Y ).

Next consider the independent square:

U
β
↪→ X

‖ π↓
U

α
↪→ Y

and set θ′ := α∗(θ) ∈ HomDb(U)(QU ,QU ) [20, (G2), p. 26]. Applying [20, (G2), (ii), p. 26] to
the square:

H0(U)
β∗0← H0(X)

θ′0↓ θ0↓
H0(U)

α∗0← H0(Y )

we get

θ′0(1U ) = θ′0(β∗0(1X)) = β∗0(θ0(1X)) = β∗0(deg θ · 1Y ) = deg θ · β∗0(1Y ) = deg θ · 1U .

Since π|U = idU , as in (6) we deduce for all k and all c ∈ Hk(U):

θ′k(c) = θ′k((π|U )∗k(c)) = θ′k(1U ∪ c) = θ′0(1U ) ∪ c = deg θ · (1U ∪ c) = deg θ · c,

i.e.,

(8) θ′k = deg θ · idHk(U).

From [20, (G2), (ii), p. 26] it follows that

(9) deg θ · β∗k = θ′k ◦ β∗k = α∗k ◦ θk
for all k. By (7) and (9) we see that a bivariant class θ is natural if and only if deg θ = 1, and
this is equivalent to saying that β∗k = α∗k ◦ θk for all k. Observe that if θ is a bivariant class with
deg θ 6= 0, then 1

deg θ θ is natural.

(ix) We say that Y is a Q-cohomology (or homology) manifold if for all y ∈ Y and all k 6= 2n
one has Hk(Y, Y \{y}) = 0, and H2n(Y, Y \{y}) ∼= Q [27], [28]. Recall that Y is a Q-intersection
cohomology manifold if IC•Y

∼= QY [n] in Db(Y ), where IC•Y denotes the intersection cohomology
complex of Y [17, p. 156], [27].
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Remark 2.6. By [20, 3.1.4, p. 34] we know that there is a mapping φ : X → Rm such that
(π, φ) : X → Y × Rm is a closed imbedding. In this case one has

H0(X
π→ Y ) ∼= Hm(Y × Rm, Y × Rm\Xφ),

where Xφ is the image of X in Y × Rm. If Y is a Q-cohomology manifold, then by Poincaré-
Alexander-Lefschetz Duality [1, Theorem 1.1] we have:

Hm(Y × Rm, Y × Rm\Xφ) ∼= H2n(X).

It follows that

(10) dimQH
0(X

π→ Y ) = 1.

On the other hand, since U is smooth, we also have [19, Lemma 2 and (26), p. 217]:

H0(U
idU→ U) ∼= Hm(U × Rm, U × Rm\Uφ) ∼= HBM

2n (U) ∼= H0(U) ∼= Q,

where HBM
2n (U) denotes the Borel-Moore homology. Therefore, the pull-back

α∗ : H0(X
π→ Y )→ H0(U

idU→ U)

for bivariant classes identifies with the restriction in Borel-Moore homology:

H2n(X) ∼= HBM
2n (U).

Comparing with (8) and (10), this proves that if Y is a Q-cohomology manifold, then there is a
unique natural bivariant class.

(x) Let I• be an injective resolution of QX . Let J • := π∗(I•) be the derived direct im-
age Rπ∗QX of QX in Db(Y ). When k ≥ 1 the cohomology sheaves Rkπ∗QX = Hk(J •) are
supported on Sing(Y ), and for all y ∈ Sing(Y ) we have Hk(J •)y = Hk(Gy).

Remark 2.7. The complex J •[n] is self-dual. In fact, by [17, p. 69, Proposition 3.3.7, (ii)], we
have:

D(J •[n]) = D(Rπ∗QX [n]) = Rπ∗(D(QX [n])) = Rπ∗(QX [n]) = J •[n].

(xi) Since Y has only isolated singularities, we have [17, Proposition 5.4.4, p. 157]:

(11) IHk(Y ) ∼=


Hk(Y ) if k > n

=(α∗n) if k = n

Hk(U) if k < n.

3. The main results

Theorem 3.1 below is essentially already known. Property (i) implies (ii) by [32, Theorem
1.11, p. 518]. That property (ii) implies (i) is implicit in the argument developed by Navarro
in order to prove [30, (6.3) Corollaire, p. 293] using a relative version of the Hard Lefschetz
Theorem. Here we give a simpler and more direct proof that (ii) implies (i), avoiding the use of
the relative Hard Lefschetz Theorem.

Theorem 3.1. The following properties are equivalent.

(i) In the derived category of Y there is an isomorphism:

Rπ∗QX ∼= IC•Y [−n]⊕H•.

(ii) The map Hk−1(G)→ Hk(Y, U) vanishes for all k > n.
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The equivalences of properties (v), (vi) and (vii) in the next Theorem 3.2 are already known
[4], [28], [27]. We insert them in the claim for Reader’s convenience. We refer to [27] for other
equivalences concerning a Q-cohomology manifold.

Theorem 3.2. The following properties are equivalent.

(i) The map Hk−1(G)→ Hk(Y,U) vanishes for all k > 0 and the pull-back π∗k is injective.

(ii) There exists a natural graded morphism θ• : H•(X)→ H•(Y ).

(iii) There exists a natural bivariant class θ ∈ HomDb(Y )(Rπ∗QX ,QY ).

(iv) The natural map H•(Y )→ IH•(Y )is an isomorphism;

(v) Y is a Q-intersection cohomology manifold.

(vi) Y is a Q-cohomology manifold.

(vii) The duality morphism H•(Y )
· ∩[Y ]−→ H2n−•(Y ) is an isomorphism (i.e., Y satisfies

Poincaré Duality).

(viii) In Db(Y ) there exists a decomposition

(12) Rπ∗QX ∼= QY ⊕
⊕
k≥1

Rkπ∗QX [−k].

Moreover, if π : X → Y is the blowing-up of Y along Sing(Y ) with smooth and connected fibres,
then previous properties are equivalent to the following property:

(ix) For all y ∈ Sing(Y ) one has H•(Gy) ∼= H•(Pn−1).

Remark 3.3. (i) Projecting onto QY , from the decomposition (12), we obtain a bivariant class

η ∈ HomDb(Y )(Rπ∗QX ,QY ),

whose induced Gysin morphisms ηk : Hk(X) → Hk(Y ) are surjective. In particular deg η 6= 0.
By Remark 2.6 it follows that 1

deg ηη is the unique natural bivariant class.

(ii) The natural morphism θ• : H•(X) → H•(Y ) is unique and identifies with the push-
forward via Poincaré Duality:

H•(X) ∼= H2n−•(X)→ H2n−•(Y ) ∼= H•(Y ).

In fact, by Remark 2.1 we know that, for k < 2n− 1, the restriction map α∗k : Hk(Y )→ Hk(U)
is nothing but the duality (iso)morphism because Hk(U) ∼= H2n−k(Y ). Therefore, we have

θk = (α∗k)
−1 ◦ β∗k . The case k = 2n − 1 is similar because H1(Y ) ⊆ H2n−1(U) (again compare

with Remark 2.1).

4. Preliminaries

Lemma 4.1. The following sequences are exact:

0→ Hk(Y )
π∗k→ Hk(X)

i∗k→ Hk(G)→ 0 for all k > n,

Hn(Y )
π∗n→ Hn(X)

i∗n→ Hn(G)→ 0,

0→ H2n−k(G)→ Hk(X)
β∗k→ Hk(U)→ 0 for all k < n.
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Proof. By [18, p. 84, 6∗] we know that Hk(Y,Sing(Y )) ∼= Hk(X,G) for all k. Since Sing(Y ) is
finite, we also have Hk(Y, Sing(Y )) ∼= Hk(Y ) for k ≥ 1. Therefore, the long exact sequence of
the pair:

. . .→ Hk(X,G)→ Hk(X)
i∗k→ Hk(G)→ Hk+1(X,G)→ . . .

identifies, when k ≥ 1, with the long exact sequence:

(13) . . .→ Hk(Y )
π∗k→ Hk(X)

i∗k→ Hk(G)→ Hk+1(Y )→ . . . .

In order to prove that the first two sequences are exact, it suffices to prove that i∗k is surjective
for all k ≥ n. To this purpose, let L be a general hyperplane section of Y , and put Y0 := Y \L,
and X0 := π−1(Y0). As before, we have a long exact sequence:

. . .→ Hk(Y0)→ Hk(X0)→ Hk(G)→ Hk+1(Y0)→ . . .

and by Deligne’s theorem [33, Proposition 4.23], we know that the pull-back maps

Hk(X)
i∗k→ Hk(G) and Hk(X0)→ Hk(G)

have the same image. Then we are done. In fact, since Y0 is affine, we have Hk+1(Y0) = 0 for
all k ≥ n by stratified Morse Theory [21, p. 23-24].

In order to examine the last sequence, assume k < n. Then 2n − k > n, and we just proved
that the pull-back H2n−k(X,G) ∼= H2n−k(Y )→ H2n−k(X) is injective. Combining the Poincaré
Duality Theorem with the Lefschetz Duality Theorem [31, p. 297] we have H2n−k(X) ∼= Hk(X)
and H2n−k(X,G) ∼= Hk(U). Therefore, the push-forward Hk(U) → Hk(X) is injective. Hence,
the restriction Hk(X)→ Hk(U) is onto for all k < n. Now our assertion follows from (5). �

Lemma 4.2. Fix an integer k, and let γ∗k : Hk(Y, U) → Hk(X,U) be the pull-back. Assume
that π∗k : Hk(Y )→ Hk(X) is injective. Then the following properties are equivalent.

(i) γ∗k is injective;

(ii) =(α∗k−1) = =(β∗k−1);

(iii) Hk−1(G)→ Hk(Y,U) is the zero map.

Proof. Consider the natural commutative diagram with exact rows:

Hk−1(X)
β∗k−1−→ Hk−1(U) −→ Hk(X,U) −→ Hk(X)

π∗k−1↑ ‖ γ∗k↑ π∗k↑

Hk−1(Y )
α∗k−1−→ Hk−1(U) −→ Hk(Y,U) −→ Hk(Y ).

If γ∗k is injective, then

ker(Hk−1(U)→ Hk(X,U)) = ker(Hk−1(U)→ Hk(Y,U)).

It follows that =(α∗k−1) = =(β∗k−1) because =(α∗k−1) = ker(Hk−1(U)→ Hk(Y,U)) and

=(β∗k−1) = ker(Hk−1(U)→ Hk(X,U)).

Conversely, assume that =(α∗k−1) = =(β∗k−1), and fix an element c ∈ ker γ∗k . Since π∗k is injective,

there exists some c′ ∈ Hk−1(U) which maps to c via Hk−1(U)→ Hk(Y,U). Since c ∈ ker γ∗k , a
fortiori c′ belongs to =(β∗k−1). Hence, c′ ∈ =(α∗k−1) and c = 0. The equivalence of (i) with (iii)
follows from (3). �

Corollary 4.3. Let Hk(G) → H2n−k(G) be the map obtained by composing the map
Hk(G) → H2n−k(X) with the pull-back H2n−k(X) → H2n−k(G). Assume k ≥ n and that
=(α∗k) = =(β∗k). Then the map Hk(G)→ H2n−k(G) is injective.
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Proof. By Lemma 4.1, Lemma 4.2, and (3), we deduce that the map Hk(X,U) → Hk(G) is
onto. Dualizing we get an injective map Hk(G)→ Hk(X,U). We are done because, by excision
and the Lefschetz Duality Theorem [31, p. 298], we have

Hk(X,U) ∼= Hk(D, ∂D) ∼= H2n−k(D) ∼= H2n−k(G).

�

Corollary 4.4. We have:

Hk(X) ∼=

{
IHk(Y )⊕Hk(G) if k > n,

IHk(Y )⊕H2n−k(G) if k < n.

Moreover, if =(α∗n) = =(β∗n), then

Hn(X) ∼= IHn(Y )⊕Hn(G).

Proof. In view of Lemma 4.1 we only have to examine the case k = n. Since β∗n ◦π∗n = α∗n, there
exists a subspace P ⊆ =(π∗n) ⊆ Hn(X), which is mapped isomorphically to

=(β∗n) = =(α∗n) = IHn(Y )

via β∗n. In particular P ∩ kerβ∗n = {0}, and so Hn(X) = IHn(Y ) ⊕ kerβ∗n. On the other hand
kerβ∗n = =(Hn(X,U)→ Hn(X)). By Corollary 4.3 we know that the map Hn(X,U)→ Hn(X)
is injective because so is the composite Hn(X,U) ∼= Hn(G) → Hn(X) → Hn(G). Therefore,
kerβ∗n = =(Hn(X,U)→ Hn(X)) ∼= Hn(X,U) ∼= Hn(G) ∼= Hn(G). �

Lemma 4.5. Assume that =(α∗k) = =(β∗k) for all k ≥ n. Then there is an injective map of
complexes

0→ H• → J •.

Proof. It is enough to prove that for all k there is a monomorphism of sheaves

Hk ↪→ ker (J k → J k+1).

First, we examine the case k ≥ n.
To this aim, set Γ• := Γ(J •) and denote by dk : Γk → Γk+1 the differential. Then we have

Hk(X) = Hk(Γ•). By Lemma 4.1 every element a of Hk = Hk(G) can be lifted to an element
c ∈ ker dk. We claim that every a ∈ Hk(G) can be lifted to an element b ∈ ker dk ⊆ Γ(J k)
which is supported on Sing(Y ). Proving this claim amounts to show that every a ∈ Hk(G) can
be lifted to an element b ∈ ker dk ⊂ Γ(J k) = Γ(Ik) such that b |U= 0 ∈ Γ(J k |U ). But c |U
projects to a cohomology class living in =(Hk(X)→ Hk(U)). By our assumption we have

=(Hk(X)
β∗k→ Hk(U)) = =(Hk(Y )

α∗k→ Hk(U)).

Since

Hk(Y ) ∼= Hk(Y, Sing(Y )) ∼= Hk(X,G)

[18, p. 84, 6∗], we find

=(Hk(Y )
α∗k→ Hk(U)) = =(Hk(X,G)→ Hk(U)).

On the other hand we have

Hk(X,G) ∼= Hk(X,β!QU )

[5, Theorem 12.1], [17, Remark 2.4.5, (ii)]. By definition of direct image with proper support
[24, §2.6], [17, Definition 2.3.21], the sheaf β!QU identifies with the subsheaf of QX consisting
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of sections with support contained in U . It follows that there exists eU ∈ Γ(J k−1 |U ) and
g ∈ Γ(J k) supported in U such that

c |U −dk−1(eU ) = g |U .

Moreover, there exists e ∈ Γ(J k−1) with e |U= eU , because J k−1 is injective (hence flabby).
We conclude that the section

c− g − dk−1(e) ∈ Γ(J k)

is supported on Sing(Y ). Our claim is proved because g + dk−1(e) ∈ Γ(J k) vanishes in Hk(G).
To conclude the proof in the case k ≥ n, fix a basis ar ∈ Hk = Hk(G) and lift every ar to a
br ∈ ker dk ⊆ Γ(J k) as in the claim. We get an isomorphism between Hk(G) and a subspace of
Γ(J k) consisting of sections supported on Sing(Y ). We are done because such an isomorphism
projects to a monomorphism of sheaves Hk ↪→ ker (Jk → Jk+1).

Now we assume k < n.
By Lemma 4.1 every element a of Hk = H2n−k(G) ⊆ Hk(X) can be lifted to an element

c ∈ ker dk. Since a restricts to 0 in Hk(U), there exists e ∈ Γ(J k−1 |U ) such that c |U= dk−1U (e).
Since J k−1 is flabby, we may assume e ∈ Γ(J k−1). Therefore, b := c − dk−1(e) ∈ Γ(J k)
represents a and is supported on Sing(Y ). As in the case k ≥ n, applying this argument to a
basis of Hk = H2n−k(G), we define a monomorphism of sheaves Hk ↪→ ker (J k → J k+1). �

With the same assumption as in Lemma 4.5, let K• be the cokernel of the inclusion
0→ H• → J •:

0→ H• → J • → K• → 0.

All the sheaves of these complexes are injective. Previous sequence gives rise to a long exact
sequence of sheaf cohomology:

. . .→Hk → Hk(J •)→ Hk(K•)→ . . . ,

and for all k ≥ 1 these sheaves are supported on Sing(Y ).

Proposition 4.6. For all k the sequence

0→ Hk → Hk(J •)→ Hk(K•)→ 0

is exact.

Proof. It suffices to prove that the map Hk
y → Hk(J •)y is injective for all y ∈ Sing(Y ) and all

k > 0. If k ≥ n this is obvious because Hk(J •)y = Hk(Gy) = Hk
y . When 1 ≤ k < n we have

Hk
y = H2n−k(Gy). And the map H2n−k(Gy) → Hk(J •)y = Hk(Gy) is injective by Corollary

4.3. �

Lemma 4.7. Let 0 → H• f•→ J • g•→ K• → 0 be an exact sequence of complexes of sheaves.
Assume that H• is a complex of injective sheaves with vanishing differential dkH• = 0 for all k.
The following properties are equivalent.

(i) The sequence coming from the cohomology long exact sequence:

(14) 0→Hk(H•)→ Hk(J •)→ Hk(K•)→ 0

is exact for all k.

(ii) There is a complex map s• : K• → J • such that g• ◦ s• = idK• .
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Proof. We only have to prove that (i) implies (ii).
Since H0 is injective, the exact sequence sequence 0→H0 → J 0 → K0 → 0 admits a section

s0 : K0 → J 0, with g0 ◦ s0 = idK0 . Therefore, we may construct s• = {si}i≥0 using induction
on i. Assume i ≥ 0 and that there are sections s0, . . . , si, with sh : Kh → J h, gh ◦ sh = idKh ,
and sh ◦ dh−1K• = dh−1J • ◦ sh−1 for all 0 ≤ h ≤ i. As before, since Hi+1 is injective and the

sequence 0→Hi+1 → J i+1 → Ki+1 → 0 is exact, there exists a section σi+1 : Ki+1 → J i+1,
with gi+1 ◦ σi+1 = idKi+1 . A priori it may happen that σi+1 ◦ diK• is different from diJ • ◦ si, so

we have to modify σi+1. To this purpose set:

δ := σi+1 ◦ diK• − diJ • ◦ si ∈ Hom(Ki,J i+1).

Since
gi+1 ◦ δ = gi+1 ◦ σi+1 ◦ diK• − gi+1 ◦ diJ • ◦ si = diK• − diK• = 0,

it follows that

(15) =(δ) ⊆ Hi+1.

Since (14) is exact, the map gi sends ker diJ • onto ker diK• , i.e.,

(16) gi(ker diJ •) = ker diK• .

In view of the exactness of the sequence 0 → H• f•→ J • g•→ K• → 0, and of the assumption
diH• = 0, we also have

(17) ker gi = =(f i) ⊆ ker diJ • .

Combining (16) and (17) we deduce that:

(18) ker diJ • = (gi)−1(ker diK•).

In fact, by (16) we have ker diJ • ⊆ (gi)−1(ker diK•). On the other hand, if x ∈ (gi)−1(ker diK•),

then gi(x) ∈ ker diK• , and by (16) we may write gi(x) = gi(y) for some y ∈ ker diJ • . Hence,

x− y ∈ ker gi, and from (17) it follows that x ∈ ker diJ • . From (18) we get:

(19) si(ker diK•) ⊆ ker diJ • .

To prove this, recall that gi ◦ si = idKi . Therefore, gi(si(ker diK•)) = ker diK• , and so, taking into
account (18), we have:

si(ker diK•) ⊆ (gi)−1(ker diK•) = ker diJ • .

By (19) we deduce that:

(20) ker diK• ⊆ ker δ,

and from (15) and (20) we get

δ ∈ Hom(Ki/ ker diK• ,Hi+1).

Since Hi+1 is injective, we may extend δ to a map δ̃ ∈ Hom(Ki+1,Hi+1) such that

(21) δ̃ ◦ diK• = δ.

We have
δ̃ ∈ Hom(Ki+1,J i+1)

because Hi+1 maps to J i+1 via f i+1. Now we define:

si+1 := σi+1 − δ̃.
From (21) it follows that

si+1 ◦ diK• = diJ • ◦ si,
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and since =(δ̃) ⊆ Hi+1, we also have

gi+1 ◦ si+1 = idKi+1 .

�

5. Proof of Theorem 3.1

As we have seen in Section 3, by [32, Theorem 1.11, p. 518] one knows that the Decomposition
Theorem implies (ii). Therefore, we only have to prove that (ii) implies (i).

In view of Lemma 4.1 and Lemma 4.2 we have =(α∗k) = =(β∗k) for all k ≥ n. From Lemma
4.5, Proposition 4.6, and Lemma 4.7, we get:

(22) Rπ∗QX = J • = K• ⊕H•.

Hence, we only have to prove that

K• ∼= ICY [−n],

where IC•Y = ICtopY [−n] denotes the intersection cohomology complex of Y [17, p. 156]. Observe
that the restriction α−1K• of K• to U is QU , and that, by (22), we have K• ∈ Db

c(Y ) [17, p.
81-82]. Therefore, K•[n] is an extension of QU [n] [17, p. 134]. So to prove that K• ∼= ICY [−n]
it suffices to prove that K•[n] ∼= α!∗QU [n], i.e., that K•[n] is the intermediary extension of QU [n]
[17, p.156 and p.135]. By [17, Proposition 5.2.8, p. 135], this in turn reduces to prove that for
all y ∈ Sing(Y ) the following two conditions hold true (iy : {y} → Y denotes the inclusion):

(a) Hki−1y K•[n] = 0 for all k ≥ 0;

(b) Hki!yK•[n] = 0 for all k ≤ 0.

As for condition (a) we notice that [17, p.130]:

Hki−1y K•[n] = Hk(K•[n])y = Hk+n(K•)y,

and Hk+n(K•)y = 0 because J • = K• ⊕ H•, and Hk+n(J •)y = Hk+n(Gy) = Hk+n(H•)y for
k ≥ 0.

For the condition (b), first notice that combining (22) with Remarks 2.3 and 2.7, we deduce
that K•[n] is self-dual. Therefore, condition (b) reduces to (a). In fact, we have [17, p. 130,
proof of Lemma 5.1.15]:

Hki!yK•[n] = H−k(i−1y D(K•[n]))∨ = H−k(i−1y (K•[n]))∨ = H−k+n(K•)∨y = 0

because k ≤ 0.

Remark 5.1. (i) If n = 2, then the map Hk−1(G) → Hk(Y,U) vanishes for all k ≥ n + 2 for
trivial reasons. In view of the connectivity of the link, combining Remark 2.2 with Lemma
4.1 and Lemma 4.2, we see that this holds true also when Y is locally complete intersection.
Therefore, either when n = 2 or when Y is locally complete intersection, in order to deduce the
decomposition (i) in Theorem 3.1, we need only check that the map Hn(G) → Hn+1(Y,U) is
the zero map. On the other hand, the vanishing of the map Hn(G)→ Hn+1(Y, U) is equivalent
to require that the natural map Hn(G)→ Hn(G) ∼= Hn(G)∨ is onto (compare with (3), (5), and
Corollary 4.3). Since Hn(G) is contained in Hn(X) via push-forward (Lemma 4.1), it follows that
the map Hn(G)→ Hn(G) ∼= Hn(G)∨ is onto if and only if Hn(G) is a nondegenerate subspace
of Hn(X) with respect to the natural intersection form Hn(X) × Hn(X) → H0(X) ∼= Q. By
Mumford’s theorem [23], [29] we know this holds true when Y is a normal surface. Therefore,
in the case Y is a normal surface (or when 2 dimG < n), our Theorem 3.1 gives a new and
simplified proof of the Decomposition Theorem for π : X → Y .
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(ii) Assume that π : X → Y is the blowing-up of Y along Sing(Y ), with smooth and connected
fibres. By Poincaré Duality we have H2n−k(Gy) ∼= Hk−2(Gy) for all y ∈ Sing(Y ). It follows
that Hk(X,U) ∼= H2n−k(G) ∼= ⊕y∈Sing(Y )H2n−k(Gy) ∼= ⊕y∈Sing(Y )H

k−2(Gy). Hence, the map

Hk(X,U) → Hk(G) identifies with the map ⊕y∈Sing(Y )H
k−2(Gy) → ⊕y∈Sing(Y )H

k(Gy) given,

on each summandHk−2(Gy)→ Hk(Gy), by the self-intersection formula, i.e., by the cup-product
with the first Chern class c1(Ny) ∈ H2(Gy) of the normal bundle Ny of Gy in X. Since π is the
blowing-up along the finite set Sing(Y ), the dual normal bundle N∨y

∼= OGy
(1) is ample for all

y ∈ Sing(Y ). From the Hard Lefschetz Theorem it follows that the map Hk−2(Gy)→ Hk(Gy) is
onto for all k ≥ n, and so also the map Hk(X,U)→ Hk(G) is. By (3), this implies the vanishing
of the map Hk(G)→ Hk+1(Y, U). Therefore, also in this case our Theorem 3.1 gives a new and
simplified proof of the Decomposition Theorem for π.

(iii) More generally, assume only that the fibres of π : X → Y are smooth and connected,
so that π is not necessarily the blowing-up along Sing(Y ). Using the extension of the Hard
Lefschetz Theorem to bundles of higher rank due to Bloch and Gieseker [3], [25], with a similar
argument as before one proves that if the dual normal bundle N∨y of Gy in X is ample for all

y ∈ Sing(Y ), then the map Hk(G)→ Hk+1(Y, U) vanishes for all k ≥ n. In fact, set

hy := dimX − dimGy

for all y ∈ Sing(Y ). Now the map Hk(X,U)→ Hk(G) identifies with the map

⊕y∈Sing(Y )H
k−2hy (Gy)→ ⊕y∈Sing(Y )H

k(Gy)

given, on each summand Hk−2hy (Gy)→ Hk(Gy), by the cup-product with the top Chern class
chy (Ny) = (−1)hychy (N∨y ) ∈ H2hy (Gy) of the normal bundle Ny of Gy in X. And such a map
is onto for k ≥ n by the quoted extension of the Hard Lefschetz Theorem, because N∨y is ample.
We refer to [15, Proposition 2.12 and proof] for examples of resolution of singularities verifying
previous assumptions.

6. Proof of Theorem 3.2

(i) =⇒ (ii) By Lemma 4.1 and Lemma 4.2 we have =(α∗k) = =(β∗k) for all k. Let
y1, . . . , ya, ya+1, . . . , yb be a basis of Hk(Y ) such that α∗ky1, . . . , α

∗
kya is a basis for =(α∗k) = =(β∗k),

and ya+1, . . . , yb a basis for kerα∗k. Since π∗k(kerα∗k) ⊆ kerβ∗k , we may extend π∗kya+1, . . . , π
∗
kyb

to a basis π∗kya+1, . . . , π
∗
kyb, xb+1, . . . , xc of kerβ∗k . Then

π∗ky1, . . . , π
∗
kya, π

∗
kya+1, . . . , π

∗
kyb, xb+1, . . . , xc

is a basis for Hk(X). Define θk : Hk(X) → Hk(Y ) setting θk(π∗k(yi)) := yi, and θk(xi) := 0.
Then θ• is a natural morphism.

(ii) =⇒ (i) The existence of a natural morphism implies that π∗k is injective and
=(β∗k) ⊆ =(α∗k) for all k. Since in general we have =(α∗k) ⊆ =(β∗k), it follows that =(α∗k) = =(β∗k)
for all k. By Lemma 4.1 and Lemma 4.2 we get (i).

(ii) =⇒ (iv) Since π∗k is injective for all k, using (13) we get a short exact sequence:

0→ Hk(Y )
π∗k→ Hk(X)

i∗k→ Hk(G)→ 0

for all k ≥ 1. In particular, for k ≥ 1, we have

(23) Hk(X) ∼= Hk(Y )⊕Hk(G).
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On the other hand, since θk ◦ π∗k = idHk(Y ), the short exact sequence

0→ ker θk → Hk(X)
θk→ Hk(Y )→ 0

admits π∗k as a section. It follows another decomposition:

(24) Hk(X) = π∗kH
k(Y )⊕ ker θk.

Comparing (23) with (24) we see that

ker θk ∼= Hk(G)

for all k ≥ 1. On the other hand, since α∗k ◦ θk = β∗k , we have

(25) ker θk ⊆ ker(Hk(X)
β∗k→ Hk(U)) = =(Hk(X,U)→ Hk(X)).

Since Hk(X,U) ∼= H2n−k(G), it follows that

(26) dimHk(G) ≤ dimH2n−k(G)

for all k ≥ 1. By the Universal-coefficient formula [31, p. 248 ] we deduce that, for 1 ≤ k ≤ 2n−1,

(27) ker θk ∼= Hk(G) ∼= H2n−k(G).

Taking into account that =(α∗n) = =(β∗n), combining (23), (27) and Corollary 4.4, it follows
that dimHk(Y ) = dim IHk(Y ) for all k. Therefore, by (11), it suffices to prove that

α∗k : Hk(Y )→ Hk(U)

is surjective for all k < n. To this purpose notice that, for k < n, β∗k is surjective by Lemma 4.1.
This implies that also α∗k is by (24) and (25) (compare with diagram (2)).

(iv) =⇒ (vii) Since intersection cohomology verifies Poincaré Duality [17, p. 158], we have:

Hh(Y ) = IHh(Y ) = (IH2(m+1)−h(Y ))∨ = (H2(m+1)−h(Y ))∨ = H2(m+1)−h(Y ).

(vii) =⇒ (iv) This follows from (11) and Remark 2.1.

(v) ⇐⇒ (vi) ⇐⇒ (vii) By [28, Theorem 2, Lemma 2, Lemma 3] we know that the duality
morphism is an isomorphism if and only if Y is a Q-cohomology manifold, which is equivalent
to saying that Y is a Q-intersection cohomology manifold by [27, Theorem 1.1] (compare also
with [4]).

(vii) =⇒ (ii) Denote by dYk : Hk(Y )→ H2n−k(Y ) the duality isomorphism, by

dXk : Hk(X) ∼= H2n−k(X)

the Poincaré Duality isomorphism, by π∗,k : H2n−k(X) → H2n−k(Y ) the push-forward. Set
θk : Hk(X)→ Hk(Y ) with

θk := (dYk )−1 ◦ π∗,k ◦ dXk .
Then θ• is a natural morphism.

(iii) ⇐⇒ (ii) We only have to prove that (ii) implies (iii). This follows from Remark 2.6
because Y is a Q-cohomology manifold.

(ii) =⇒ (viii) Since Y is a Q-intersection cohomology manifold, combining (27) with Theorem
3.1, we get:

Rπ∗QX ∼= QY ⊕H• ∼= QY ⊕
⊕
k≥1

Rkπ∗QX [−k].
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(viii) =⇒ (ii) See Remark 3.3, (i).

(ii) ⇐⇒ (ix) By [27, Theorem 1.1] we deduce that Y is a Q-intersection cohomology manifold
if and only if for all y ∈ Sing(Y ) the link ∂By has the same Q-homology type as a sphere S2n−1.
On the other hand, via deformation to the normal cone, we may identify ∂By with the link of
the vertex of the projective cone over Gy ⊆ PN−1. Restricting the Hopf bundle S2N−1 → PN−1
to Gy, we obtain an S1-bundle ∂By → Gy inducing the Thom-Gysin sequence [31, p. 260]

· · · → Hk(Gy)→ Hk(∂By)→ Hk−1(Gy)→ Hk+1(Gy)→ Hk+1(∂By)→ . . .

And this sequence implies that ∂By has the same Q-homology type as a sphere S2n−1 if and
only if H•(Gy) ∼= H•(Pn−1).

Remark 6.1. By (26) it follows that h2(G) ≤ h2n−2(G). Therefore, if Y is a Q-cohomology
manifold, then dimG = 0 or dimG = n− 1.
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série, t. 42, 517-529, 2009.

[11] Di Gennaro, V. - Franco, D.: Noether-Lefschetz Theory and Néron-Severi group, Int. J. Math. 23 (2012),
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Séminaire BOURBAKY, 2015-2016, n. 1115, pp. 31.
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