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HOW TO GLUE PARITY SHEAVES

PRAMOD N. ACHAR

Abstract. Let X be a stratified space on which the Juteau–Mautner–Williamson theory of

parity sheaves is available. We develop a “nearby cycles formalism” in the framework of the
homotopy category of parity sheaves on X , also known as the mixed modular derived category

of X . This construction is expected to have applications in modular geometric representation
theory.

1. Introduction

1.1. Overview. Let X be a stratified complex algebraic variety or stack on which the theory of
parity sheaves [JMW] (say, with coefficients in k) is available. Following [AR2], one can consider
the mixed modular derived category Dmix(X ,k), defined to be the bounded homotopy category
of chain complexes of parity sheaves. This category, which is a kind of replacement for the usual
bounded derived category of constructible sheaves Db

c (X ,k), has become a fundamental tool for
recent advances in modular geometric representation theory: see [AR4, AMRW2].

The main advantage of working with Dmix(X ,k) rather than Db
c (X ,k) is that the former is

equipped with a notion of “weights,” resembling those of mixed `-adic sheaves or mixed Hodge
modules (see [AR3]). On the other hand, Dmix(X ,k) lacks the full sheaf-theoretic machinery
available in Db

c (X ,k): it is difficult to carry out sheaf-theoretic operations on Dmix(X ,k) unless
their classical versions preserve parity sheaves. For instance, there has so far been no theory of
“nearby cycles” for Dmix(X ,k).

The aim of this paper is to develop a nearby cycles formalism for the mixed modular derived
category. More precisely, suppose X is equipped with an additional action of Gm, and let
f : X → A1 be a Gm-equivariant map. Let X0 = f−1(0), and let Xη = f−1(C r {0}). We will
define a functor

(1.1) Ψf : Dmix
Gm

(Xη)→ Dmix(X0)

that in many ways resembles the unipotent part of the classical nearby cycles functor. In
particular, for any F ∈ Dmix

Gm
(Xη,k), the nearby cycles sheaf Ψf (F) will be equipped with a

natural nilpotent endomorphism

N : Ψf (F)→ Ψf (F)〈2〉

that should be thought of as the “logarithm of the monodromy.” This construction is expected
to have applications to the study of the center of the affine Hecke category: it should make
it possible to adapt results of Gaitsgory [G] to the mixed modular setting, and then to write
down central objects concretely using the Elias–Williamson calculus [EW]. For some examples,
see [ARd2].
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1.2. The classical unipotent nearby cycles functor. Before discussing the ingredients in
the definition of (1.1), let us briefly review the classical situation (for sheaves in the analytic
topology). Following [KS] or [Re], it is given by

Ψan
f = the unipotent part of i∗j∗ expX∗ exp∗X F [−1],

where the maps i, j, and expX are as in the following diagram:

(1.2)

X0 X Xη X̃η = Xη ×C× C

{0} C C× C

i

f

j

fη

expX

exp

An easy computation shows that Ψan
f (F) can also be described as the unipotent part of

i∗j∗RHom(f∗η exp! kC[1],F).

Note that exp! kC is the “regular local system,” i.e., the (infinite-rank) local system corresponding
to the action of π1(C×, 1) ∼= Z on its own group algebra k[Z] = k[t, t−1].

To get a more concise formula for the unipotent part, one can replace exp! kC above by the
pro-unipotent local system L∞ corresponding to the π1(C×, 1)-module k[[t − 1]]. With some
additional work, or using the ideas of [B2] (see also [M, Re]), one can also replace the RHom by
a tensor product, and arrive at the formula

(1.3) Ψan
f (F) = i∗j∗(f

∗
ηL∞(1)⊗L F).

(Here, (1) is a Tate twist, introduced to match the conventions of [M] and most other sources.
Note that [B2] omits this Tate twist.) This formula has the advantage of avoiding the nonalge-
braic map expX , at the expense of explicitly involving the nonconstructible object L∞.

1.3. Monodromy and constructibility. The goal of this paper is to adapt (1.3) to the mixed
modular setting. The main obstacle is that L∞ does not make sense: the framework of parity
sheaves in [JMW] does not allow for infinite-rank stalks or for nonsemisimple local systems.

To solve this problem, we introduce a variant of Dmix(X ,k) called the monodromic derived
category, and denoted by Dmix

mon(X ,k). This category, whose definition is closely inspired by
that of “free-monodromic objects” in [AMRW1], does allow both nonconstructible objects and
nonsemisimple local systems. It fits into a diagram with the Gm-equivariant and ordinary derived
categories as shown below:

(1.4)
Dmix

Gm
(X ,k) Dmix

mon(X ,k)

Dmix(X ,k)

J

For

Coi

Mon

The functors labeled For, Mon, and Coi are called the forgetful functor, the monodromy functor,
and the coinvariants of monodromy functor, respectively. Among other foundational facts, we
will prove that Mon is full faithful, and that Coi is left adjoint to Mon ◦For. The image of Mon
is precisely the category of constructible objects in Dmix

mon(X ,k).
The functor J will be defined in Section 9 under an additional assumption on X , called R-

triviality. (In the context of (1.2), Xη satisfies this assumption, but X0 does not.) This functor
is equpped with a natural isomorphism

(1.5) Coi(J (F)) ∼= F
and a nonzero natural transformation (not an isomorphism)

(1.6) J (F)→ Mon(For(F)).
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Suppose now that F is a perverse sheaf. Informally, (1.5) says that J (F) is “acyclic” for the
coinvariants of monodromy functor—in other words, the output of J (F) behaves like a projective
(or pro-unipotent) object with respect to the monodromy action. Then, (1.6) lets us identify it
as the pro-unipotent cover of Mon(For(F)).

The key idea in this paper is that the functor J can serve as a replacement for the expression
f∗ηL∞⊗L (−) from (1.3). The actual definition of the mixed modular nearby cycles functor (1.1)
is

Ψf (F) = Mon−1(i∗j∗J (F))〈−2〉.
Of course, for Mon−1 to make sense here, we will need to prove that i∗j∗J (F) is constructible
(even though J (F) is not). This will be a consequence of a more general constructibility theorem
proved in Section 8. The same issue arises in the analytic case: a fundamental theorem about
Ψan
f is that it preserves constructibility, even though (1.3) involves the nonconstructible object
L∞.

1.4. t-exactness. The second fundamental result about the classical nearby cycles functor Ψan
f

is that it is t-exact for the perverse t-structure. In this paper, following [Re], we explain how to
deduce the t-exactness of Ψf from the assumption that j! and j∗ are t-exact (see Hypothesis 10.4).
The inclusion map j : Xη ↪→ X is an affine morphism, so in the classical setting, the t-exactness
of these functors is a theorem. In the mixed modular case, this is assumption is related to
Assumption (A2) from [AR2, §3.2]. The latter has been checked in the important case of (Kac–
Moody) flag varieties. It seems likely that for applications in geometric representation theory,
it will be possible to verify Hypothesis 10.4 in the relevant cases. (See [ARd2] for some such
cases.) Unfortunately, Hypothesis 10.4, and hence the t-exactness of Ψf , remains conjectural in
general.

1.5. Contents of the paper. Section 2 establishes notation and conventions for graded rings
and for parity sheaves. In Sections 3–5, we define and establish basic properties of the categories
and functors in (1.4).

Sections 6 and 7 deal with the recollement formalism and the perverse t-structure for the
various categories in (1.4). (In some important special cases, these results were previously
obtained in [AR2]. See also [ARV] for related results.) This part of the paper is needed for the
functors i∗ and j∗ to make sense.

In Section 8, we define the notion of constructibility for objects in Dmix
mon(X ,k). The main

result of this section states that when X satisfies an additional technical condition (called R-
freeness), every object Dmix

mon(X ,k) is constructible.
Section 9 contains the definition and basic properties of the functor J . The heart of the paper

is Section 10, which defines and proves the basic properties of the nearby cycles functor Ψf , as
well as two related functors, called the maximal extension functor Ξf and the vanishing cycles
functor Φf . We conclude the paper in Section 11 with a few examples.

1.6. Acknowledgments. The ideas in this paper have been strongly influenced by conversa-
tions with Shotaro Makisumi, Simon Riche, and Laura Rider. Thanks also to Ben Elias and
Geordie Williamson for helpful remarks at an early stage of this work.

2. Preliminaries

2.1. Bigraded rings and modules. Let k be a field or a complete local principal ideal domain.
Given a bigraded k-module M =

⊕
i,j∈ZM

i
j , we let M [n] and M〈k〉 be the bigraded modules

given by

(M [n])ij = M i+n
j and (M〈n〉)ij = M i

j−n.
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We also define an operation M 7→ M{n} by M{n} = M〈−n〉[n]. If m ∈ M i
j , we say that m is

homogeneous of bidegree
(
i
j

)
. We call i the cohomological degree of m, and we write

|m| = i.

If M and N are bigraded k-modules, we define bigraded k-modules M ⊗N and Hom(M,N) in
the usual way:

(M ⊗N)ij =
⊕
p+q=i
r+s=j

Mp
r ⊗Nq

s , Hom(M,N)ij =
⊕
q−p=i
s−r=j

Hom(Mp
r , N

q
s ).

Let ξ, ξ̄, r, and r̄ be four indeterminates with bidgrees

deg ξ =
(

2
2

)
, deg ξ̄ =

(
1
2

)
, deg r =

(
0
−2

)
, deg r̄ =

(−1
−2

)
.

We define various bigraded symmetric algebras on these generators:

(2.1)

R = k[ξ] R∨ = k[r]

Λ = k[ξ̄] Λ∨ = k[̄r]

A = k[ξ, ξ̄] = Λ⊗R A∨ = k[r, r̄] = Λ∨ ⊗R∨

S = k[ξ, r] = R∨ ⊗R.

These symmetric algebras are to be understood in the graded sense, as in [AMRW1, §3.1]. Since
ξ̄ and r̄ have odd cohomological degree, the rings Λ and Λ∨ are exterior algebras on one generator.
The rings R, R∨, and S are polynomial rings. The element

Θ = rξ ∈ S2
0

will play an important role in the sequel.
Each of the rings defined above has a unit map, denoted by ιR : k→ R, ιA : k→ A, etc., and

a counit map, denoted by εR : R→ k, εA : A→ k, etc.
Equip A and A∨ with differentials κ and κ∨ given by setting

κ(ξ) = 0, κ∨(r) = 0,

κ(ξ̄) = ξ, κ∨(̄r) = r,

and then extending by the Leibniz rule. The following fact is well known.

Lemma 2.1. The maps εA : (A, κ)→ k and εA∨ : (A∨, κ∨)→ k are quasi-isomorphisms.

Let k〈̄r, ξ̄〉 be the free associative bigraded k-algebra on the generators r̄ and ξ̄, and then let

E = k〈̄r, ξ̄〉/(̄r2 = 0, ξ̄2 = 0, r̄ξ̄ + ξ̄r̄ = 1).

This ring contains Λ∨ and Λ as subrings, and the multiplication map

(2.2) Λ∨ ⊗ Λ→ E

is an isomorphism of k-modules (but not a ring isomorphism). There is an isomorphism of
bigraded k-algebras

(2.3) E
∼→ End(Λ∨)

given by letting the subring Λ∨ ⊂ E act on Λ∨ by multiplication, and letting Λ ⊂ E act by
contraction (i.e., ξ̄ gives the endomorphism 1 7→ 0, r̄ 7→ 1 of Λ∨).

Finally, let

B = R∨ ⊗ E⊗R.



132 PRAMOD N. ACHAR

All seven rings defined in (2.1) can be regarded as subrings of B. (Unlike those rings, however,
B is not graded-commutative.) Let

ω = rξ̄ + r̄ξ ∈ B1
0.

It is easy to see that

(2.4) ω2 = Θ.

Equip B with the differential κ given by

κ(b) = ωb+ (−1)|b|+1bω.

Lemma 2.2. The inclusion map (A, κ)→ (B,κ) is a quasi-isomorphism.

Proof. In B, we have κ(ξ) = ωξ−ξω = 0, and κ(ξ̄) = r̄ξξ̄+ ξ̄r̄ξ = ξ. In other words, the inclusion
map A → B is at least a chain map. Similarly, the inclusion map (A∨, κ∨) → (B,κ) is also a
chain map. Since κ obeys the Leibniz rule, the multiplication map

A∨ ⊗ A→ B

is again a chain map (but no longer a ring homomorphism). In view of (2.2), this map is an
isomorphism of k-modules, and hence of chain complexes. Since A and H•(A) are both flat over
k, we deduce that H•(B) ∼= H•(A∨)⊗ H•(A) ∼= k, as desired. �

2.2. Parity sheaves. Let H be an algebraic group over C. Suppose that H admits an action
of Gm by group automorphisms, so that we may form the group Gm nH.

Let X be a variety over C with an action of Gm n H. Assume that X is equipped with an
algebraic stratification (Xs)s∈S such that:

(1) Each stratum Xs is preserved by the action of Gm nH.
(2) The equivariant cohomology H•GmnH(Xs,k) of each stratum is concentrated in even de-

grees and free over k.
(3) Every Gm nH-equivariant local system on every stratum Xs is trivial.

Recall that k is a field or a complete local principal ideal domain. Under the assumptions above, it
makes sense to speak of GmnH-equivariant parity sheaves on X, and [JMW, Theorem 2.12] says
that there is at most one indecomposable parity sheaf (up to shift and isomorphism) supported
on each stratum closure. We add one more assumption:

(4) For each stratum Xs, there exists an indecomposable Gm nH-equivariant parity sheaf
Es supported on Xs and satisfying Es|Xs

∼= k[dimXs].

The action of the group H is relevant for applications, so it is important to make sure our set-up
keeps track of H-equivariance. On the other hand, the H-action plays no role in the present
paper. For brevity, it is convenient to suppress H from the notation. To this end, we will use
the “stacky” notation

X := X/H and Xs := Xs/H for each s ∈ S .

We henceforth denote the category of Gm nH-equivariant parity sheaves on X by

ParityGm
(X ,k).

This category inherits a “cohomological shift” functor from the derived category Db
Gm

(X ,k).
Following [AR2], we denote this functor by {1}. For any two objects F ,G ∈ ParityGm

(X ,k),
the graded k-module

⊕
n Hom(F ,G{n}) naturally has the structure of a graded module over

H•Gm
(pt,k).
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We make these spaces into bigraded modules that are “concentrated on the diagonal” as
follows: for F ,G ∈ ParityGm

(X ,k), let Hom(F ,G) be the bigraded k-module given by

Hom(F ,G)ij =

{
Hom(F ,G{i}) if i = j,

0 otherwise.

Next, recall that H•Gm
(pt,k) is the symmetric algebra on H2

Gm
(pt,k) = k⊗ZX(Gm), where X(Gm)

is the character lattice of Gm. Identify the canonical generator of X(Gm) with the indeterminate
ξ. In this way, we obtain an identification

R = k[ξ] = H•Gm
(pt,k).

For F ,G ∈ ParityGm
(X ,k), the space Hom(F ,G) is then a bigraded R-module.

Note that we have not imposed any assumptions on the structure of Hom(F ,G) as an R-
module. However, it will sometimes be useful to consider the following special cases.

Definition 2.3. The space X is said to be R-free if for every stratum Xs, the cohomology
H•Gm

(Xs,k) is free as an R-module. By (the proof of) [JMW, Proposition 2.6], it follows that for
any two objects F ,G ∈ ParityGm

(X ,k), the space Hom(F ,G) is a free R-module.
On the other hand, X is said to beR-trivial if for any two parity sheaves F ,G ∈ ParityGm

(X ,k),
the element ξ ∈ R acts by 0 on Hom(F ,G). If X is R-trivial, then every locally closed union of
strata in X is also R-trivial.

Remark 2.4. If X is R-free, then the H-equivariant cohomology (forgetting the Gm-action) of a
stratum is given by

H•H(Xs,k) = H•(Xs,k) ∼= k⊗R H•Gm
(Xs,k).

In particular, the H-equivariant cohomology of each stratum is again even, so it makes sense
to drop the Gm-equivariance and consider the category Parity(X ,k) of H-equivariant parity
sheaves on X.

However, if X is not R-free, the cohomology H•H(Xs,k) can fail to be even, so Parity(X ,k)
does not make sense in general.

2.3. Graded parity sheaves. We define a graded parity sheaf to simply be a formal expression
of the form

F =
⊕
i∈Z
F i[−i],

where F i ∈ ParityGm
(X ,k), and where all but finitely many terms are zero. (Of course, any

parity sheaf can be regarded as a graded parity sheaf.) If F and G are graded parity sheaves,
we define

Hom(F ,G) =
⊕
i,j∈Z

Hom(F i,Gj)[i− j].

The notion of a graded parity sheaf is equivalent to the notion of a “parity sequence” from
[AMRW1]. The category of graded parity sheaves is denoted by ParityZ

Gm
(X ,k). For

F ∈ ParityZ
Gm

(X ,k),

define F [n] in the obvious way, and define F〈n〉 by F〈n〉 = F{−n}[n].

3. Three derived categories

In this section, we will define the three categories in (1.4), as well as the forgetful functor.
Each category arises as the homotopy category of a k-linear dgg (differential bigraded) category.
In all three cases, the objects are graded parity sheaves with some additional data.
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3.1. The Gm-equivariant derived category. Let dgmix
Gm

(X ,k) be the dgg category defined as
follows:

• The objects are pairs (F , δ), where F ∈ ParityZ
Gm

(X ,k), and where

δ ∈ End(F)1
0 satisfies δ ◦ δ = 0.

• Given two objects (F , δF ) and (G, δG) as above, the morphism space is Hom(F ,G), made
into a chain complex with the differential

d(f) = δG ◦ f + (−1)|f |+1f ◦ δF .

We then set

Dmix
Gm

(X ,k) = Ho(dgmix
Gm

(X ,k)),

and we call this the Gm-equivariant derived category of X . An object of dgmix
Gm

(X ,k) can be
thought of as just a chain complex over the additive category ParityGm

(X ,k). In other words,

Dmix
Gm

(X ,k) can be identified with KbParityGm
(X ,k).

Note that any parity sheaf F can be regarded as an object of Dmix
Gm

(X ,k) by equipping it with
the zero differential.

Example 3.1. Let X = A1, stratified as the union of X0 = {0} and X1 = A1 r {0}, and equipped
with the standard action of Gm. Then E0 = kX0

, and E1 = kX1
{1}. There is a restriction

map ε : E1 → E0{1} = E0〈−1〉[1]. This map can be taken to be the differential of an object of
Dmix

Gm
(X ,k) with underlying graded parity sheaf E1 ⊕ E0〈−1〉. We draw this object as follows:

E1 E0〈−1〉.[1]
ε

3.2. The constructible derived category. Recall the dgg ring A and its differential κ. Given
two graded parity sheaves F and G, we also write κ for the differential on the k-module

A⊗R Hom(F ,G)

given by κ(a⊗ f) = κ(a)⊗ f .

Let dgmix
A (X ,k) be the dgg category defined as follows:

• The objects are pairs (F , δ), where F ∈ ParityZ
Gm

(X ,k), and where

δ ∈ (A⊗R End(F))1
0 satisfies δ ◦ δ = 0.

• Given two objects (F , δF ) and (G, δG) as above, the morphism space is

A⊗R Hom(F ,G) ∼= Λ⊗Hom(F ,G),

made into a chain complex with the differential

d(f) = δG ◦ f + (−1)|f |+1f ◦ δF + κ(f).

We then set

Dmix(X ,k) = Ho(dgmix
A (X ,k)),

and we call this the constructible derived category of X .
Note that any parity sheaf F can be regarded as an object of Dmix(X ,k) by equipping it with

the zero differential.
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Example 3.2. Let X , E0, and E1 be as in Example 3.1. There is a map η : E0{−1} → E1 that is
Verdier dual to ε : E1 → E0{1}. It can be shown that ε ◦ η = ξ · idE0{−1}. There is an object of

Dmix(X ,k) given by

E0〈1〉 E1 E0〈−1〉.[1]
η

[1]

−ξ̄·id

[1]
ε

Remark 3.3. Degree considerations show that for any two graded parity sheaves F and G, both
Hom(F ,G)0

j and (A⊗R Hom(F ,G))0
j can be nonzero for only finitely many j. As a consequence,

if F and G are objects of either Dmix
Gm

(X ,k) or Dmix(X ,k), the direct sum⊕
n∈Z

Hom(F ,G〈n〉)

has only finitely many nonzero terms.

3.3. The forgetful functor. For any F ,G ∈ ParityZ
Gm

(X ,k), the inclusion map R ↪→ A induces
a map of Hom-spaces that we denote by

For : Hom(F ,G)→ A⊗R Hom(F ,G).

If (F , δ) is an object of dgmix
Gm

(X ,k), then it is easy to see that (F ,For(δ)) is an object of

dgmix
A (X ,k). We therefore obtain a functor denoted by For : dgmix

Gm
(X ,k) → dgmix

A (X ,k). After
passing to homotopy categories, we obtain a functor

For : Dmix
Gm

(X ,k)→ Dmix(X ,k),

called the forgetful functor.

3.4. The constructible derived category in the R-free case. At first glance, the definition
of the constructible derived category Dmix(X ,k) in §3.2 does not resemble that in [AR2]. Let us
explain how to compare the two. Assume that X is R-free, and recall from Remark 2.4 that we
may drop the Gm-equivariance, and consider the category Parity(X ,k) of H-equivariant parity

sheaves. We can also form its graded version ParityZ(X ,k). Let dgmix(X ,k) be the dgg category

whose objects are pairs (F , δ), with F ∈ ParityZ(X ,k), and with δ ∈ End(F)1
0 satisfying δ◦δ = 0.

Let
Dmix(X ,k) = Ho(dgmix(X ,k)).

Then Dmix(X ,k) can be identified with KbParity(X ,k). The category Dmix(X ,k) is precisely
what was called the mixed derived category in [AR2]. We will see below that Dmix(X ,k) and
Dmix(X ,k) are equivalent.

The functor ParityZ
Gm

(X ,k)→ ParityZ(X ,k) that forgets the Gm-equivariance will be denoted

by F 7→ F̄ . By [ARd1, Lemma A.11], for F ,G ∈ ParityZ
Gm

(X ,k), there is a natural isomorphism

k⊗R HomParityZ
Gm

(X ,k)(F ,G)
∼→ HomParityZ(X ,k)(F̄ , Ḡ).

The counit εA : A→ k then induces a map

(3.1) A⊗R HomParityZ
Gm

(X ,k)(F ,G)→ HomParityZ(X ,k)(F̄ , Ḡ).

Because Hom(F ,G) is free (and hence flat) over R, Lemma 2.1 implies that this is a quasi-
isomorphism.

Now let (F , δ) ∈ dgmix
A (X ,k). Let δ̄ ∈ End(F̄) be the image of δ under (3.1). This element

satisfies δ̄2 = 0, so we get a functor

F : dgmix
A (X ,k)→ dgmix(X ,k).
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Passing to homotopy categories, we obtain a functor

F : Dmix(X ,k)→ Dmix(X ,k)

Lemma 3.4. Assume that X is R-free. The functor F : Dmix(X ,k) → Dmix(X ,k) is an
equivalence of categories.

Proof. The fact that (3.1) is a quasi-isomorphism implies that F is fully faithful. The category
Dmix(X ,k) ∼= KbParity(X ,k) is generated as a triangulated category by parity sheaves (with
zero differential). Since these objects are clearly in the image of F , and since F is a triangulated
functor (see Section 4 for the triangulated structure on Dmix(X ,k)), we conclude that F is
essentially surjective as well. �

Thus, for an R-free variety, the notation Dmix(X ,k) as used in the present paper is consistent
in spirit with that of [AR2].

On the other hand, if X is not R-free, it cannot be studied in the framework of [AR2] (because
Parity(X ,k) does not make sense). The definition of Dmix(X ,k) in the present paper is new in
that case.

3.5. The monodromic derived category. Recall the element Θ ∈ S2
0. Let dgmix

S,Θ(X ,k) be
the dgg category defined as follows:

• The objects are pairs (F , δ), where F ∈ ParityZ
Gm

(X ,k), and where

δ ∈ (S⊗R End(F))1
0 satisfies δ ◦ δ = Θ · idF .

• Given two objects (F , δF ) and (G, δG) as above, the morphism space is

S⊗R Hom(F ,G) ∼= R∨ ⊗Hom(F ,G),

made into a chain complex with the differential

d(f) = δG ◦ f + (−1)|f |+1f ◦ δF .
(The fact that d ◦ d = 0 follows from the fact that f ◦ΘidF = ΘidG ◦ f = Θf .) We then set

Dmix
mon(X ,k) = Ho(dgmix

S,Θ(X ,k)),

and we call it the monodromic derived category.
The ring R∨ can be regarded as a subring of S ⊗R End(F) ∼= R∨ ⊗ End(F) for any object

F ∈ dgmix
S,Θ(X ,k). Moreover, the definition of the differential shows that d(r) = 0, so we obtain

a morphism r · idF : F → F〈2〉.

Definition 3.5. For F ∈ Dmix
mon(X ,k), the map

NF = r · idF : F → F〈2〉
is called the monodromy endomorphism.

It is immediate from the definitions that the monodromy endomorphism commutes with all
morphisms in Dmix

mon(X ,k). That is, for any morphism f : F → G, we have NG ◦ f = f〈2〉 ◦ NF .
(Of course, it is a slight misnomer to call it an “endomorphism.”)

It is a bit trickier to exhibit examples of objects in Dmix
mon(X ,k) than in Dmix

Gm
(X ,k) or

Dmix(X ,k), since the zero map is not a valid differential for a graded parity sheaf F unless
Θ · idF = 0. Nevertheless, given any parity sheaf F , one can construct an object of Dmix

mon(X ,k)
from it as follows:

F F〈−2〉[1][1]

ξ·id

[1]

r·id
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Example 3.6. In the context of Examples 3.1 and 3.2, we can write down some more complicated
objects in Dmix

mon(X ,k). Here is an object that is related to Example 3.1:

E1 E0〈−1〉[1]
ε

[1]
rη

Let G denote this object. It can be shown that
⊕

n∈Z Hom(G,G〈n〉) ∼= R∨. In particular, this

object shows that Remark 3.3 need not hold in Dmix
mon(X ,k).

Example 3.7. The following object is related to Example 3.2:

E0〈1〉 E1 E0〈−1〉

E0〈−1〉[1] E1〈−2〉[1] E0〈−3〉[1]

[1]

η

[1]ξ·id

[1]
ε

[1]ξ·id
[1]ξ·id

[1]

−η

[1]r·id
[1]

−id

[1]

−ε

[1]r·id
[1]r·id

See Remark 5.3 for a discussion of this object.

4. Triangulated structure

For F ∈ ParityZ
Gm

(X ,k), we of course have Hom(F ,F [1])−1
0
∼= End(F)0

0. Let

sF ∈ Hom(F ,F [1])−1
0

denote the element corresponding to the identity map idF ∈ End(F)0
0. In a minor abuse of

notation, we also write s to mean the element 1⊗s in A⊗RHom(F ,F [1]) or S⊗RHom(F ,F [1]).
There are natural isomorphisms

s : Hom(F ,G)
∼→ Hom(F [1],G[1]),

s : A⊗R Hom(F ,G)
∼→ A⊗R Hom(F [1],G[1]),

s : S⊗R Hom(F ,G)
∼→ S⊗R Hom(F [1],G[1])

given by s(f) = s ◦ f ◦ s−1. Note that in the case of A⊗R Hom(F ,G), additional signs may arise
because of the “Koszul sign rule”: for a ∈ A and f ∈ Hom(F ,G), we have

s(a⊗ f) = (id⊗ s) ◦ (a⊗ f) ◦ (id⊗ s−1)

= (−1)|s||a|+|id||s|+|id||f |((id ◦ a ◦ id)⊗ (s ◦ f ◦ s−1)) = (−1)|a|(a⊗ s(f)).

(In principle, the same phenomenon occurs in S ⊗R Hom(F ,G), but of course all elements of S
have even cohomological degree, so the signs are invisible.) Concretely, if we write

f ∈ (A⊗R Hom(F ,G))ij

as f = f0 + ξ̄f1 with f0 ∈ Hom(F ,G)ij and f1 ∈ Hom(F ,G)i−1
j−2, then

s(f) = s(f0 + ξ̄f1) = s(f0)− ξ̄s(f1).

We are now ready to define shift functors and mapping cones in the various categories from §3.
Let D̃ denote one of dgmix

Gm
(X ,k), dgmix

A (X ,k), or dgmix
S,Θ(X ,k). Define a functor [1] : D̃ → D̃ on

objects and on morphisms by

(F , δ)[1] = (F [1],−s(δ)) and f [1] = s(f).

(Here, f is an element of Hom(F ,G) or A⊗R Hom(F ,G) or S⊗R Hom(F ,G), as appropriate.)
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Next, let f : (F , δF )→ (G, δG) be a chain map, i.e., a morphism of bidegree
(

0
0

)
with d(f) = 0.

We define the cone of f to be the object

cone(f) =

(
G ⊕ F [1],

[
δG f ◦ s−1

0 −s(δF )

])
.

Then there is a natural diagram

(4.1) (F , δF )
f−→ (G, δG)→ cone(f)→ (F , δF )[1].

Any diagram in Dmix
Gm

(X ,k), Dmix(X ,k), or Dmix
mon(X ,k) that is isomorphic to (the image of) a

diagram of the form (4.1) is called a distinguished triangle.

Proposition 4.1. The categories Dmix
Gm

(X ,k), Dmix(X ,k), and Dmix
mon(X ,k) are all triangulated.

The proof is a minor variation on the usual proof that the homotopy category of an additive
category is triangulated, as in, say, [KS, Lemma I.4.2 and Proposition I.4.4], and will be omitted.
The reader who wishes to see a few details in the case of Dmix(X ,k) may consult [AMRW1,
Proposition 4.5.1] for a very similar situation.

Lemma 4.2. The categories Dmix
Gm

(X ,k) and Dmix(X ,k) are both generated as triangulated
categories by parity sheaves.

Proof. The case of Dmix
Gm

(X ,k) is obvious, since it is equivalent to KbParityGm
(X ,k).

Let (F , δ) be an object of Dmix(X ,k), and write F =
⊕

i∈Z F i[−i]. Let n be the largest

integer such that Fn 6= 0. Let F ′ = Fn[−n], and let F ′′ =
⊕

i<n F i[−i]. Thus F ∼= F ′ ⊕ F ′′.
With respect to this direct sum decomposition, the differential δ can be written as a matrix

δ =

[
a f
b δ′′

]
.

But degree considerations show that EndA(F ′)1
0 = 0 and HomA(F ′,F ′′)1

0 = 0. Thus, a = 0 and
b = 0. Next, observe that

δ2 + κ(δ) =

[
0 f
0 δ′′

]2

+

[
0 κ(f)
0 κ(δ′′)

]
=

[
0 fδ′′ + κ(f)
0 (δ′′)2 + κ(δ′′)

]
= 0.

We deduce that (F ′′, δ′′) is an object of Dmix(X ,k) in its own right, and that (F , δ) is the cone
of a morphism f : F ′′[−1]→ F ′.

Note that F ′ is a shift of a parity sheaf, and that the graded parity sheaf F ′′ has fewer nonzero
components than F . By induction on the number of nonzero components, we conclude that F
belongs to the subcategory generated by parity sheaves. �

5. Monodromy and Verdier duality

In this section, we define the functors Mon and Coi from (1.4). We also define Verdier duality
for all three categories, and we discuss how Verdier duality interacts with the various functors.

5.1. Construction of the monodromy functor. Recall the inclusion map of dgg rings A→ B
from §2.1. For any two F ,G ∈ ParityZ

Gm
(X ,k), this induces a map

(5.1) i : A⊗R Hom(F ,G)→ B⊗R Hom(F ,G).

If we equip these spaces with the differential κ and κ, respectively, then, because A and B are
both flat over R, Lemma 2.2 implies that (5.1) is a quasi-isomorphism.

Now suppose that (F , δF ) and (G, δG) are objects of dgmix
A (X ,k). Then one can consider

i(δF ) ∈ B⊗R End(F), and likewise for G.
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Lemma 5.1. Let (F , δF ) and (G, δG) be objects in dgmix
A (X ,k).

(1) The element i(δF ) ∈ B⊗R End(F) satisfies i(δF )2 + κ(i(δF )) = 0.
(2) Equip A⊗R Hom(F ,G) and B⊗R Hom(F ,G) with the differentials

dA(f) = δG ◦ f + (−1)|f |+1f ◦ δF + κ(f),

dB(f) = i(δG) ◦ f + (−1)|f |+1f ◦ i(δF ) + κ(f).

Then i : A⊗R Hom(F ,G)→ B⊗R Hom(F ,G) is a chain map.

Proof. It is easy to see that the map (5.1) is compatible with composition in the Hom factor,
and with multiplication in the A and B factors. We have already observed that it is a chain map
with respect to κ and κ. Both parts of the lemma follow. �

Next, for any F ∈ ParityZ
Gm

(X ,k), let

(5.2) Λ∨ ⊗F = F ⊕ F〈−2〉[1].

This object can be equipped with a canonical isomorphism

Hom(−,Λ∨ ⊗F) ∼= Λ∨ ⊗Hom(−,F).

For any two graded parity sheaves F ,G ∈ ParityZ
Gm

(X ,k), we have the following chain of iso-
morphisms (the first step here relies on (2.3)):

(5.3) B⊗R Hom(F ,G) ∼= R∨ ⊗ End(Λ∨)⊗R⊗R Hom(F ,G)

∼= R∨ ⊗R⊗R Hom(Λ∨ ⊗F ,Λ∨ ⊗ G) = S⊗R Hom(Λ∨ ⊗F ,Λ∨ ⊗ G).

Let λ : B⊗R Hom(F ,G)
∼→ S⊗R Hom(Λ∨ ⊗F ,Λ∨ ⊗ G) be the composition of these maps.

Lemma 5.2. Let F ,G ∈ ParityZ
Gm

(X ,k), and let

δ̂F ∈ (B⊗R End(F))1
0, δ̂G ∈ (B⊗R End(G))1

0

be elements such that δ̂2
F + κ(δ̂F ) = 0 and δ̂2

G + κ(δ̂G) = 0.

(1) The element λ(δ̂F + ω) ∈ S⊗R End(F) satisfies λ(δ̂F + ω)2 = ΘidF .
(2) Equip B⊗R Hom(F ,G) and S⊗R Hom(F ,G) with the differentials

dB(f) = δ̂G ◦ f + (−1)|f |+1f ◦ δ̂F + κ(f),

dS(f) = λ(δG + ω) ◦ f + (−1)|f |+1f ◦ λ(δF + ω).

Then λ : B ⊗R Hom(F ,G)
∼→ S ⊗R Hom(Λ∨ ⊗ F ,Λ∨ ⊗ G) is an isomorphism of chain

complexes.

Proof. (1) We have

(δ̂F + ω)2 = δ̂2
F + ωδ̂F + δ̂Fω + ω2 = δ̂2

F + κ(δ̂F ) + Θ = Θ.

(2) This follows from the formula κ(f) = ω ◦ f + (−1)|f |+1f ◦ ω and the observation that λ is
compatible with composition. �

We are now ready to define a functor

Mon : dgmix
A (X ,k)→ dgmix

S,Θ(X ,k).

On objects, it is given by Mon(F , δ) = (Λ∨ ⊗ F , λ(i(δ) + ω)). On morphism spaces, it is given
by

(5.4) Mon = λ ◦ i : A⊗R Hom(F ,G)→ S⊗R Hom(F ,G).



140 PRAMOD N. ACHAR

Lemmas 5.1 and 5.2 tell us that Mon(F , δ) is a well-defined object of dgmix
S,Θ(X ,k), and that the

map (5.4) is indeed a chain map. After passing to homotopy categories, we obtain a functor

Mon : Dmix(X ,k)→ Dmix
mon(X ,k).

Let us try to make the description of Mon more concrete. As part of the map λ ◦ i from (5.1)
and (5.3), we have an inclusion map

(5.5)  : Hom(F ,G)→ Hom(Λ∨ ⊗F ,Λ∨ ⊗ G) given by (f) = idΛ∨ ⊗ f.
However, with respect to the decomposition (5.2) (and its analogue for G), there are signs
involved: we claim that

(f) =

[
f

(−1)|f |f

]
.

To see this, consider the unit and counit maps ιΛ∨ : k→ Λ∨ and εΛ∨ : Λ∨ → k. The upper-left
entry of (f) is the element of End(F) given by

(εΛ∨ ⊗ idG)(idΛ∨ ⊗ f)(ιΛ∨ ⊗ idF ) = idk ⊗ f,
while the lower-right entry is given by

(εΛ∨ ξ̄ ⊗ idG)(idΛ∨ ⊗ f)(̄rιΛ∨ ⊗ idF ) = (−1)|̄r||f |(idk ⊗ f) = (−1)|f |f.

With respect to the decomposition (5.2), the maps ξ̄ and r̄ can be written as ξ̄ = [ 0 id
0 0 ] and

r̄ = [ 0 0
id 0 ], respectively, so ω = [ r

ξ ].

Now let (F , δ) be an object of dgmix
A (X ,k). Write δ as δ0 + ξ̄δ1, where δ0 ∈ End(F)1

0, and
δ1 ∈ End(F)0

−2. Then

λ(i(δ) + ω) =

[
δ0
−δ0

]
+

[
0 id
0 0

] [
δ1

δ1

]
+

[
r

ξ

]
.

Thus Mon(F , δ) can be written as

(5.6) Mon(F , δ0 + ξ̄δ1) =

(
F ⊕ F〈−2〉[1],

[
δ0 δ1 + r
ξ −δ0

])
or F F〈−2〉[1].

[1]

δ0

[1]

ξ
[1]

−δ0

[1]

δ1+r

If we write f ∈ (A⊗R Hom(F ,G))ij as f0 + ξ̄f1 with f0 ∈ Hom(F ,G)ij and f1 ∈ Hom(F ,G)i−1
j−2,

then

Mon(f) =

[
f0 (−1)|f |+1f1

(−1)|f |f0

]
.

Remark 5.3. For an explicit example, applying Mon to the object from Example 3.2 yields the
object from Example 3.7.

Lemma 5.4. The functor Mon : Dmix(X ,k)→ Dmix
mon(X ,k) is triangulated.

Proof. Using the explicit formula for Mon given above along with the descriptions of the shift
functor [1] from Section 4, we have

Mon((F , δF )[1]) =
(
F [1]⊕F〈−2〉[2],

[
−δF,0 δF,1+r
ξ δF,0

])
,

Mon(F , δF )[1] =
(
F [1]⊕F〈−2〉[2],

[
−δF,0 −δF,1−r
−ξ δF,0

])
,

where δF = δF,0 + ξ̄δF,1. Then the map

(5.7)
[

id
−id

]
: F [1]⊕F〈−2〉[2]→ F [1]⊕F〈−2〉[2]
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is clearly a chain isomorphism Mon((F , δF )[1])→ Mon(F , δF )[1].
Next, let (G, δG) be another object of Dmix(X ,k), and write δG = δG,0 + ξ̄δG,1. Let

f : (F , δF ) → (G, δG) be a chain map, and write f = f0 + ξ̄f1. Recall that the cone of f is
given by

cone(f) =
(
G ⊕ F [1],

[
δG,0 f0

−δF0

]
+ ξ̄

[
δG,1 f1

δF1

])
We have

Mon(cone(f)) =

(
G ⊕ F [1]⊕ G〈−2〉[1]⊕F〈−2〉[2],

[
δG,0 f0 δG,1+r f1

−δF,0 δF,1+r
ξ −δG,0 −f0

ξ δF,0

])
and

cone(Mon(f)) =

(
G ⊕ G〈−2〉[1]⊕F [1]⊕F〈−2〉[2],

[
δG,0 δG,1+r f0 −f1
ξ −δG,0 f0

−δF,0 −δF,1−r
−ξ δF,0

])
.

Then it is easily checked that the map

(5.8)

[
id

id
id

−id

]
:
G ⊕ F [1]⊕ G〈−2〉[1]⊕F〈−2〉[2]→

G ⊕ G〈−2〉[1]⊕F [1]⊕F〈−2〉[2]

provides a natural isomorphism Mon(cone(f))
∼→ cone(Mon(f)), and moreover that the two

natural transformations we have defined give rise to a commutative diagram

Mon(F , δF ) Mon(G, δG) Mon(cone(f)) Mon(F [1])

Mon(F , δF ) Mon(G, δG) cone(Mon(f)) Mon(F)[1]

Mon(f)

(5.8) (5.7)

Mon(f)

Thus, Mon is triangulated. �

Proposition 5.5. The functor Mon : Dmix(X ,k)→ Dmix
mon(X ,k) is fully faithful.

Proof. Since Mon is triangulated, it is enough to check that

(5.9) Hom((F , δF ), (G, δG))→ Hom(Mon(F , δF ),Mon(G, δG))

is an isomorphism when (F , δF ) and (G, δG) belong to some class of objects that generates
Dmix(X ,k). For instance, by Lemma 4.2, we may assume that they are both shifts of parity
sheaves with zero differential. Since δF = 0 and δG = 0, the differentials dA and dB from
Lemma 5.1 reduce to κ and κ, respectively. In this special case, we have seen that the map (5.1)
is a quasi-isomorphism. Since λ is an isomorphism, the map (5.4) is a quasi-isomorphism as well,
so (5.9) is an isomorphism. �

Remark 5.6. An immediate and striking consequence is that Definition 3.5 can be transferred
to the constructible category: for any F ∈ Dmix(X ,k), we have a canonical map

NF : F → F〈2〉,
that commutes with all morphisms in Dmix(X ,k). By Remark 3.3, this map is nilpotent: Nk

F = 0
for k � 0. (In contrast, Example 3.6 shows that in Dmix

mon(X ,k), NF need not be nilpotent.)

The following statement describes the monodromy endomorphism in terms intrinsic to
Dmix(X ,k). It resembles (up to a sign) the “monodromy action” discussed in [AMRW1, §4.7].

Proposition 5.7. Let (F , δ) ∈ Dmix(X ,k), and write its differential as δ = δ0 + ξ̄δ1, where
δ0 ∈ End(F)1

0, and δ1 ∈ End(F)0
−2. Then the monodromy endomorphism is given by NF = −δ1.
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This proposition implicitly asserts that δ1 is a chain map, i.e., that δδ1 − δ1δ + κ(δ1) = 0.
This follows easily from the fact that δ2 + κ(δ) = 0.

Proof. It is enough to show that Mon(−δ1) = NMon(F) in Dmix
mon(X ,k). Let h ∈ (S⊗R End(F ⊕

F〈−2〉[1]))−1
−2 be the map given by h = [ 0 0

id 0 ]. Then

d(h) =

[
δ0 δ1 + r
ξ −δ0

] [
0 0
id 0

]
+

[
0 0
id 0

] [
δ0 δ1 + r
ξ −δ0

]
=

[
δ1 + r

δ1 + r

]
= Mon(δ1) + r · id = Mon(δ1) + NMon(F).

Thus, the chain maps Mon(−δ1) and NMon(F) are homotopic, as desired. �

5.2. Verdier duality. Let us denote by Dord : ParityGm
(X ,k) → ParityGm

(X ,k) the ordinary
Verdier duality functor on parity sheaves. We will use this to define a version of Verdier duality
for each of the three derived categories from §3. As a first step, we extend Dord to graded parity
sheaves by the formula

Dord

(⊕
i∈Z
F i[−i]

)
=
⊕
i∈Z

(DF i)[i].

For F ,G ∈ ParityZ
Gm

(X ,k), Dord induces an isomorphism of bigraded k-modules

(5.10) Dord : Hom(F ,G)→ Hom(DordG,DordF).

The ring automorphism of H•Gm
(pt,k) induced by Dord is the identity map. More generally, the

map (5.10) is a homomorphism of R-modules.
The easiest case is the equivariant derived category: we define

D : Dmix
Gm

(X ,k)op → Dmix
Gm

(X ,k) by D(F , δ) = (DordF ,Dordδ).

Next, consider the map

idΛ ⊗ Dord : A⊗R Hom(F ,G)→ A⊗R Hom(DordG,DordF).

This is a chain map with respect to the differential κ. This observation lets us define

D : Dmix(X ,k)→ Dmix(X ,k) by D(F , δ) = (DordF , (idΛ ⊗ Dord)(δ)).

By construction, we clearly have
D ◦ For ∼= For ◦ D.

The monodromic category is a bit trickier, because we would like Mon to commute with
Verdier duality as well. We define

D : Dmix(X ,k)→ Dmix(X ,k) by D(F , δ) = ((DordF)〈−2〉[1],Dord(δ)〈−2〉[2]).

Lemma 5.8. For F ∈ Dmix
mon(X ,k), there is a natural isomorphism Mon(DF) ∼= DMon(F).

Proof. Using the formula from (5.6), we see that

Mon(D(F , δ0 + ξ̄δ1)) =
(

(DF)⊕ (DF)〈−2〉[1],
[
Dord(δ0) Dord(δ1)+r

ξ −Dord(δ0)

])
,

DMon(F , δ0 + ξ̄δ1) =
(

(DF)⊕ (DF)〈−2〉[1],
[
−Dord(δ0) Dord(δ1)+r

ξ Dord(δ0)

])
Write DF as

⊕
i∈Z Gi[−i] with Gi ∈ ParityGm

(X ,k), and let q ∈ End(DF) be the map

q =
∑

(−1)iidGi [−i]. It is easy to see from degree considerations that

q ◦ Dord(δ0) = −Dord(δ0) ◦ q, q ◦ Dord(δ1) = Dord(δ1) ◦ q.
It follows that the map

[ q q ] : (DF)⊕ (DF)〈−2〉[1]→ (DF)⊕ (DF)〈−2〉[1]
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defines a natural isomorphism Mon ◦ D ∼= D ◦Mon. �

It is left to the reader to check that all three versions of Verdier duality are triangulated
functors. They also satisfy

D ◦ D ∼= id.

In particular, all three versions of D are equivalences of categories.

5.3. Invariants and coinvariants of monodromy. For F ,G ∈ ParityZ
Gm

(X ,k), the counit
map εR∨ : R∨ → k induces a map of Hom-spaces that we denote by

Coi : S⊗R Hom(F ,G)→ Hom(F ,G).

If (F , δ) is an object of dgmix
S,Θ(X ,k), then it is easy to see that (F ,Coi(δ)) is an object of

dgmix
Gm

(X ,k). We therefore obtain a functor denoted by Coi : dgmix
S,Θ(X ,k) → dgmix

Gm
(X ,k). After

passing to homotopy categories, we obtain a functor

Coi : Dmix
mon(X ,k)→ Dmix

Gm
(X ,k),

called the coinvariants of monodromy functor, or simply the coinvariants functor.
Unlike For and Mon, the coinvariants functor does not commute with Verdier duality. We

define

Inv : Dmix
mon(X ,k)→ Dmix

Gm
(X ,k) by Inv = D ◦ Coi ◦ D.

It is called the invariants of monodromy functor, or simply the invariants functor. The following
fact is immediate from the definitions.

Lemma 5.9. For F ∈ Dmix
mon(X ,k), there is a natural isomorphism Inv(F) ∼= Coi(F)〈2〉[−1].

The following proposition gives a key property of these functors.

Proposition 5.10. The functor Mon ◦ For : Dmix
Gm

(X ,k) → Dmix
mon(X ,k) is right adjoint to Coi

and left adjoint to Inv.

Proof. For brevity, let For′ = Mon ◦ For : Dmix
Gm

(X ,k)→ Dmix
mon(X ,k). It is enough to prove that

For′ is right adjoint to Coi, as the other part of the proposition would then follow by Verdier
duality.

This functor can be described by omitting the term “δ1” from the formula in (5.6): for
(F , δF ) ∈ Dmix

Gm
(X ,k), we have

For′(F , δF ) = F F〈−2〉[1].

[1]

δF

[1]

ξ
[1]

−δF

[1]
r

Then Coi(For′(F , δF )) ∈ Dmix
Gm

(X ,k) is obtained by suppressing the arrow labelled r. Define a

map ε : Coi(For′(F , δF ))→ (F , δF ) by the diagram

F F

F〈−2〉[1]

[1]
δF

[1]ξ

id [1]
δF

[1]

−δF

.

Next, let (G, δG) ∈ Dmix
mon(X ,k). Expand δG ∈ R∨ ⊗ End(G) as

δG = δG,0 + rδG,1,



144 PRAMOD N. ACHAR

where δG,0 ∈ End(G)1
0, and δG,1 ∈ (R∨ ⊗ End(G))1

2. The equation δ2
G = Θ = rξ implies that

(5.11) δ2
G,0 = 0 and δG,0δG,1 + δG,1δG,0 + rδ2

G,1 = ξid.

We have Coi(G, δG) = (G, δG,0), and

For′(Coi(G, δG)) = G G〈−2〉[1].

[1]

δG,0

[1]

ξ
[1]

−δG,0

[1]
r

Define a map η : (G, δG)→ For′(Coi(G, δG)) by

G G

G〈−2〉[1]

[1]
δG=δG,0+rδG1

id

δG,1

[1]
δG0

[1]ξ

[1]

−δG,0

[1]r .

It follows from (5.11) that this is indeed a chain map. Straightforward calculations then show
that ε and η satisfy the counit–unit equations. �

6. Recollement

Let i : Z ↪→ X be the inclusion of a closed union of strata, and let j : U ↪→ X be the
complementary open inclusion. In the ordinary (nonnmixed) derived category, the functors i∗
and j∗ take parity sheaves to parity sheaves, so we get induced functors

(6.1)
i∗ : ParityZ

Gm
(Z,k)→ ParityZ

Gm
(X ,k),

j∗ : ParityZ
Gm

(X ,k)→ ParityZ
Gm

(U ,k).

It is straightforward to see that these extend to triangulated functors of the three kinds of derived
categories from Section 3. The goal of this section is to prove the following theorem.

Theorem 6.1. Let D stand for one of Dmix
Gm

, Dmix, or Dmix
mon. Let i : Z ↪→ X be the inclusion

of a closed union of strata, and let j : U ↪→ X be the complementary open inclusion. Then
the functors i∗ and j∗ both admit left and right adjoints, and these adjoints form a recollement
diagram:

D(Z,k) D(X ,k) D(U ,k)i∗ j∗

i!

i∗

j∗

j!

We first require some preliminaries involving the case where Z is a single stratum.

Lemma 6.2. Let i : Xs ↪→ X be the inclusion of a closed stratum. Let U = X r Xs, and let
j : U ↪→ X be the inclusion map. Let C be a flat R-algebra. For any two graded parity sheaves
F ,G ∈ ParityZ

Gm
(X ,k), there is a natural short exact sequence of bigraded k-modules

0→ C⊗R Hom(F , i∗i!G)→ C⊗R Hom(F ,G)→ C⊗R Hom(j∗F , j∗G)→ 0.

In applications, the ring C will be one of R, A, or S.

Proof. In the special case where C = R, this is essentially a restatement of [JMW, Proposi-
tion 2.6]. The general case follows because C is flat over R. �

Lemma 6.3. Let U = X r Xs be the complement of a closed stratum, and let j : U → X be the
inclusion map. Then the functor j∗ : D(X ,k)→ D(U ,k) is essentially surjective.
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Proof. We will prove this in detail for Dmix
mon. To obtain the proof for Dmix

Gm
or Dmix, replace all

mentions of S by R or A, as appropriate, and replace all mentions of Θ by 0.
Consider an object (F , δ) in Dmix

mon(U ,k). The assumptions in Section 2.2 imply that every
parity sheaf on U extends to a parity sheaf on X . The same holds for graded parity sheaves: we
can find an object F̃ ∈ ParityZ

Gm
(X ,k) together with an isomorphism j∗F̃ ∼→ F . By Lemma 6.2,

the map

(6.2) S⊗R End(F̃)→ S⊗R End(F)

is surjective. Choose an element δ̃ ∈ S ⊗R End(F̃)1
0 such that j∗δ̃ is identified with δ. Since

δ2 = Θ, we see that δ̃2−Θ lies in the kernel of (6.2). By Lemma 6.2 again, there exists a unique

element δ′ ∈ S⊗R Hom(F̃ , i∗i!F̃)2
0 such that

(6.3) ε ◦ δ′ = δ̃2 −Θ,

where ε : i∗i
!F̃ → F̃ is the adjunction map.

Let G = F̃ ⊕ i∗i!F̃ [1], and define δG ∈ End(G)1
0 by

δG =

[
δ̃ ε

−δ′ −i∗i!δ̃

]
We will show below that (G, δG) is an object of Dmix

mon(X ,k). This claim implies the lemma, since
we will then clearly have j∗(G, δG) ∼= (F , δ).

Observe first that

(6.4) δ2
G =

[
δ̃ ε

−δ′ −i∗i!δ̃

]2

=

[
δ̃2 − εδ′ δ̃ε− ε(i∗i!δ̃)

−δ′δ̃ + (i∗i
!δ̃)δ′ −δ′ε+ (i∗i

!δ̃)2

]
.

The upper left entry of this matrix is Θ, by (6.3). The upper right entry is 0 because ε is a
natural transformation, i.e., because the following diagram commutes:

(6.5)

i∗i
!F̃ F̃

i∗i
!F̃ [1] F̃ [1]

ε

i∗i
!δ̃ δ̃

ε

Next, by (6.3), we have εδ′δ̃ = δ̃3 −Θδ̃. On the other hand, using (6.5), we have

ε(i∗i
!δ̃)δ′ = δ̃εδ′ = δ̃3 −Θδ̃.

We have shown that

εδ′δ̃ = ε(i∗i
!δ̃)δ′.

By Lemma 6.2, composition with ε gives an injective map S⊗R Hom(F , i∗i!F)→ S⊗R End(F).

The equation above therefore implies that δ′δ̃ = (i∗i
!δ̃)δ′. In other words, the bottom left entry

of (6.4) vanishes.

Finally, applying i∗i
! to (6.3), we find that i∗i

!δ′ = (i∗i
!δ̃)2 −Θ. The commutative square

i∗i
!F̃ F̃

i∗i
!F̃ [2] i∗i

!F̃ [2]

εF

i∗i
!δ′ δ′

id=ε
i∗i!F

shows that i∗i
!δ′ = δ′ε. Together, these observations show that the bottom right entry of (6.4)

is Θ. We have shown that δ2
G = Θ, as desired. �



146 PRAMOD N. ACHAR

Lemma 6.4. In the special case where Z consists of a single stratum, Theorem 6.1 holds.

Proof. In this proof, we let

C =


R if we are working in Dmix

Gm
(X ,k),

A if we are working in Dmix(X ,k),

S if we are working in Dmix
mon(X ,k).

Because Z consists of a single stratum, the ordinary (nonmixed) functors i∗ and i! take parity
sheaves to parity sheaves, so as in (6.1), there are induced functors i∗, i! : D(X ,k) → D(Z,k).
Note that if F ∈ D(Z,k) and G ∈ D(X ,k), then there is a natural isomorphism of dgg k-modules

C⊗R Hom(F , i∗G) ∼= C⊗R Hom(i∗F ,G),

and hence of k-modules Hom(F , i∗G) ∼= Hom(i∗F ,G). In other words, the functor

i∗ : D(X ,k)→ D(Z,k)

is indeed left adjoint to i∗ : D(Z,k)→ D(X ,k). Similarly, i! is right adjoint to i∗.
We will construct the right adjoint j! to j∗; we will show that the adjunction map id→ j∗j!

is an isomorphism; and we will show that for every object F ∈ D(X,k), there is a distinguished
triangle

j!j
∗F → F → i∗i

∗F → .

The proofs for the corresponding assertions about the right adjoint j∗ to j∗ are similar and will
be omitted.

For any F ∈ D(X ,k), let F+ denote the cocone of the adjunction map F → i∗i
∗F . In the

following paragraphs, we will prove a number of assertions about F+.
Step 1. For any G ∈ D(Z,k), we have Hom(F+, i∗G = 0). The natural map F → i∗i

∗F
induces a map

C⊗R Hom(i∗i
∗F , i∗G)→ C⊗R Hom(F , i∗G).

By the usual adjunction properties of i∗ and i∗, this is an isomorphism of bigraded k-modules (at
the level of graded parity sheaves), and hence also of chain complexes. Next, the distinguished
triangle F+ → F → i∗i

∗F → gives rise to a long exact sequence

Hom(i∗i
∗F , i∗G)→ Hom(F , i∗G)→ Hom(F+, i∗G)→

Hom(i∗i
∗F , i∗G[1])→ Hom(F , i∗G[1]).

The discussion above implies that the first and last maps here as isomorphisms. It follows that
Hom(F+, i∗G) = 0.

Step 2. For any G ∈ D(X ,k), the natural map Hom(F+,G) → Hom(j∗F+, j∗G) is an iso-
morphism. By Lemma 6.2, we have a short exact sequence of chain complexes

0→ C⊗R Hom(F+, i∗i
!G)→ C⊗R Hom(F+,G)→ C⊗R Hom(j∗F+, j∗G)→ 0.

By Step 1, the first chain complex is acyclic, so the map between the second and third is a
quasi-isomorphism.

Step 3. Let D+ ⊂ D(X ,k) be the full triangulated subcategory generated by objects of the form
F+, and let ι : D+ ↪→ D(X ,k) be the inclusion functor. Then j∗ ◦ ι : D+ → D(U ,k) is an
equivalence of categories. Step 2 implies that j∗ ◦ ι is fully faithful. Lemma 6.3 says that the
image of j∗ generates D(U ,k). But for any F ∈ D(X ,k), we clearly have

(6.6) j∗F ∼= j∗F+ = j∗(ιF+),

so the image of j∗ ◦ ι also generates D(U ,k). We conclude that j∗ ◦ ι is essentially surjective,
and hence an equivalence of categories.
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We now define j! : D(U ,k)→ D(X ,k) to be the functor

(6.7) j! = ι ◦ (j∗ ◦ ι)−1 : D(U ,k)→ D(X ,k).

Step 4. The functor j! is left adjoint to j∗, and the adjunction map id → j∗j! is an isomor-
phism. By construction, there is a natural isomorphism j∗j! ∼= id. To show that j! is left adjoint
to j∗, we must show that for all F ∈ D(U ,k) and G ∈ D(X ,k), the map

(6.8) Hom(j!F ,G)
j∗−→ Hom(j∗j!F , j∗G) ∼= Hom(F , j∗G)

is an isomorphism. By Lemma 6.3, there exists an object F̃ ∈ D(X ,k) such that F ∼= j∗F̃ .

By (6.6), we have F ∼= j∗(ιF̃+), and then j!F = ι(j∗ι)−1j∗(ιF̃+) ∼= ιF̃+ ∼= F̃+. Step 2 then
tells us that (6.8) is an isomorphism.

Step 5. There exists a distinguished triangle j!j
∗F → F → i∗i

∗F →, where the first two maps
are adjunction maps. Consider the distinguished triangle

F+ α−→ F → i∗i
∗F →

where the second map is from adjunction. Step 4 implies that

Hom(j!j
∗F , i∗i∗F) = Hom(j!j

∗F , i∗i∗F [−1]) = 0,

so the adjunction map ε : j!j
∗F → F factors uniquely through α: there is a commutative

diagram

j!j
∗F

F+ F i∗i
∗F

εh

α

To finish the proof, we must show that h is an isomorphism. Since j!j
∗F and F+ both lie in D+,

Step 3 tells us that it is enough to show that j∗h is an isomorphism. Since j∗i∗ = 0, the bottom
row above shows that j∗α is an isomorphism, and Step 4 tells us that j∗ε is an isomorphism, so
j∗h is an isomorphism, as desired. �

Example 6.5. Let X be as in Example 3.1, and let j : X1 ↪→ X be the inclusion of the open
stratum. Let EX1

= kX1
{1} = E1|X1

. Then j!EX1
is the object described in Example 3.1.

Lemma 6.6. Let Y ⊂ X be a closed union of strata. Let Z ⊂ Y be a single closed stratum, and
let U = X r Z. Denote the inclusion maps as follows:

Y ∩ U U

Y X

kU

jY j

k

We then have

j!kU∗ ∼= k∗jY! and j∗kU∗ ∼= k∗jY∗

Note that both j and jY are inclusions of the complement of a single closed stratum, so
the functors j!, j∗, jY!, and jY∗ exist by Lemma 6.4. On the other hand, k and kU are closed
inclusions, so k∗ and kU∗ are as in (6.1).

Proof. Let iY : Z ↪→ Y and i : Z ↪→ X be the inclusion maps. For F ∈ D(Y,k), consider the
adjunction map F → iY∗i

∗
YF , and apply k∗. Using properties of iY∗, i∗, and k∗ in the ordinary

(unmixed) setting, this map can be identified with the adjunction map (k∗F) → i∗i
∗(k∗F).

Therefore, k∗ commutes with the “+” construction from the proof of Lemma 6.4.
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Let ι : D+ ↪→ D(X ,k) and ι : D+
Y ↪→ D(Y,k) be as in Step 3 of the proof of Lemma 6.4. The

preceding paragraph implies that k∗ takes D+
Y to D+, and hence that it commutes with ι.

Since we have j∗k∗ ∼= kU∗j
∗
Y in the unmixed setting, the same isomorphism holds in the mixed

setting as well. Thus, the diagram

D+
Y D(Y ∩ U ,k)

D+ D(U ,k)

j∗Y◦ι

k∗ kU∗

j∗◦ι

commutes up to natural isomorphism. The horizontal arrows are equivalences of categories, and
we have

j!kU∗ = ι(j∗ι)−1kU∗ ∼= ιk∗(j
∗
Y ι)
−1 ∼= k∗jY!,

as desired. The proof that j∗kU∗ ∼= k∗jY∗ is similar. �

Proof of Theorem 6.1. We proceed by induction on the number of strata in Z. The case of a
single stratum has been done in Lemma 6.4. Assume now that Z has more than one stratum.
Choose a closed stratum Xs ⊂ Z, and let X ′ = X r Xs and Z ′ = X ′ ∩ Z = Z r Xs. Let j′, i′,
j′′, i′′, jZ , and iZ be the inclusion maps indicated in the diagram below:

Z ′ = X ′ ∩ Z X ′ = X r Xs U

X

Z Xs

i′

jZ

j′′

j′

j=j′′◦j′

i
i′′=i◦iZ

iZ

By induction, (j′)∗ and (j′′)∗ both have left adjoints, denoted by j′! and j′′! , respectively. More-
over, the adjunction maps η′ : id → (j′)∗j′! and η′′ : id → (j′′)∗j′′! are isomorphisms. It follows
that j∗ ∼= (j′)∗ ◦ (j′′)∗ has a left adjoint, given by j! ∼= j′′! ◦ j′! . The adjunction map id → j∗j!
factors as

id
η′−→ (j′)∗j′!

(j′)∗η′′j′!−−−−−−→ (j′)∗(j′′)∗j′′! j
′
!
∼= j∗j!,

so it is an isomorphism.
Next, let G be the cone of the adjunction map ε : j!j

∗F → F . By induction, we have
distinguished triangles

j′′! (j′′)∗F → F → i′′∗(i
′′)∗F →,

j′!(j
′)∗(j′′)∗F → (j′′)∗F → i′∗(i

′)∗(j′′)∗F →
where the first two maps in each line are adjunction maps. Apply j′′! to the latter, and combine
it with the former into the following octahedral diagram:

j′′! i
′
∗(i
′)∗(j′′)∗F ∼= i∗jZ!(i

′)∗(j′′)∗F

j′′! (j′′)∗F G

F

j!j
∗F ∼= j′′! j

′
!(j
′)∗(j′′)∗F i′′∗(i

′′)∗F = i∗iZ∗(i
′′)∗F
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Here, the topmost object has been rewritten using Lemma 6.6. Since i∗ is fully faithful, the
rightmost distinguished triangle above shows that G must lie in the image of i∗, say G ∼= i∗G′.
We thus have a distinguished triangle

j!j
∗F → F → i∗G′ → .

Then [BBD, Corollaire 1.1.10] tells us that G′ is unique up to canonical isomorphism, and [BBD,
Proposition 1.1.9] says that the assignment F 7→ G′ is a functor. Denote this functor by

i∗ : D(X ,k)→ D(Z,k).

It is then straightforward to check the remaining desired properties of i∗.
The construction of j∗ and i! is similar, and will be omitted. �

Proposition 6.7. Let i : Z ↪→ X be the inclusion of a closed union of strata, and let j : U ↪→ X
be the complementary open inclusion. Then the forgetful, monodromy, and coinvariant functors
commute with all six functors in the recollement diagram.

Proof. For the functors i∗ and j∗ from (6.1), this is clear.
Let us now consider j!. From the construction in the proof of Theorem 6.1, it is clear that it

is enough to prove the statement in the case where Z consists of a single stratum. In this case,
the forgetful, monodromy, and coinvariants functors also commute with i∗ (which takes parity
sheaves to parity sheaves), and hence with the “+” construction from the proof of Lemma 6.4.
They then also commute with the functor ι from Step 3 of the proof of that lemma. From (6.7),
we conclude that they commute with j!, as desired.

Next, consider i∗. For F ∈ Dmix
Gm

(X ,k), we can construct a commutative diagram

j!j
∗For(F) For(F) i∗i

∗For(F)

For(j!j
∗F) For(F) For(i∗i

∗F)

The first vertical arrow is an isomorphism by the previous paragraph, so the third one is as well.
Since i∗ is fully faithful, we conclude that i∗For(F) ∼= For(i∗F).

The same argument applies to Mon and Coi, and the proofs for j∗ and i! are similar. �

7. The perverse t-structure

In this section, we will define the perverse t-structure on Dmix
Gm

(X ,k) and on Dmix(X ,k). (We

will not define any t-structure on Dmix
mon(X ,k).) The case of Dmix

Gm
(X ,k) is rather similar to [AR2,

§3.5] (although that paper assumes that each stratum is an affine space).
Let $ be a generator of the unique maximal ideal of k. (If k is a field, then $ = 0.) For

any stratum Xs, we have a parity sheaf kXs
{dimXs}. Define an object k/($)Xs

{dimXs} of

Dmix
Gm

(Xs,k) or Dmix(Xs,k) as follows:

k/($)Xs{dimXs} =

{
cone(kXs

{dimXs}
$·id−−−→ kXs

{dimXs}) if k is not a field,

kXs
{dimXs} if k is a field.

Lemma 7.1. Let AGm
⊂ Dmix

Gm
(Xs,k), resp. A ⊂ Dmix(Xs,k) be the full subcategory generated

under extensions by the objects

(7.1) kXs
{dimXs}〈n〉 and k/($)Xs

{dimXs}〈n〉

for n ∈ Z. Then AGm
, resp. A, is the heart of a unique bounded t-structure on Dmix

Gm
(Xs,k),

resp. Dmix(Xs,k).
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Proof. For brevity, let k
s

= kXs
{dimXs}. Let D denote either Dmix

Gm
(Xs,k) or Dmix(Xs,k).

Consider the following two claims:

(1) D is generated as a triangulated category by objects of the form k
s
〈n〉.

(2) We have

Hom(k
s
,k
s
[m]〈n〉) =


0 if m < 0, or if m = 0 and n 6= 0,

k if m = n = 0,

a free k-module if m = 1.

Claim (1) is true by Lemma 4.2. Claim (2) can be checked by direct calculations in the dgg
rings End(k

s
) ∼= H•Gm

(Xs,k) and A⊗R End(k
s
) ∼= A⊗R H•Gm

(Xs,k), recalling that H•Gm
(Xs,k) is

“concentrated on the diagonal.” (Note that in Dmix
Gm

(Xs,k), we actually have

Hom(k
s
,k
s
[1]〈n〉) = 0

for all n. In Dmix(Xs,k), the same vanishing holds for n 6= −2, but Hom(k
s
,k
s
[1]〈−2〉) may be

nonzero. However, it is still a submodule of the free k-module (A⊗R H•Gm
(Xs,k))1

2, so it is free
over k.)

Claims (1) and (2) are precisely the hypotheses of [AHR, Lemma A.1], which asserts the
existence of the desired t-structure. �

The t-structure constructed in Lemma 7.1 will be denoted by

(pDmix
Gm

(Xs,k)≤0, pDmix
Gm

(Xs,k)≥0), resp. (pDmix(Xs,k)≤0, pDmix(Xs,k)≥0).

In the case of Dmix
Gm

(Xs,k), by [AHR, Remark A.2], the heart of this t-structure is equivalent to
the category of finitely generated graded k-modules.

Definition 7.2. For each stratum Xs, let js : Xs ↪→ X be the inclusion map. The perverse
t-structure on Dmix

Gm
(X ,k) is the t-structure given by

pDmix
Gm

(X ,k)≤0 = {F ∈ Dmix
Gm

(X ,k) | j∗sF ∈ pDmix
Gm

(Xs,k)≤0 for all s},
pDmix

Gm
(X ,k)≥0 = {F ∈ Dmix

Gm
(X ,k) | j!

sF ∈ pDmix
Gm

(Xs,k)≥0 for all s}.

The perverse t-structure on Dmix(X ,k) is defined similarly.

The fact that these are indeed t-structures follows from standard properties of the recollement
formalism.

Lemma 7.3. The functor For : Dmix
Gm

(X ,k)→ Dmix(X ,k) is t-exact.

Proof. If X consists of a single stratum, this is immediate from Lemma 7.1. In the general case,
it follows from Proposition 6.7. �

Proposition 7.4. The functor For : PervGm
(X ,k)→ Perv(X ,k) is fully faithful.

Proof. Note that there is a short exact sequence of R-modules

(7.2) 0→ R→ A→ R〈2〉[−1]→ 0.

If we equip A with the differential κ, and R and R〈2〉[−1] with the zero differential, then this is
actually a short exact sequence of chain complexes, or of dgg R-modules.

Now let F ,G ∈ Dmix
Gm

(X ,k). All three terms in (7.2) are flat over R, so if we apply (−) ⊗R
Hom(F ,G), we get a short exact sequence of chain complexes

0→ Hom(F ,G)
For−−→ A⊗R Hom(F ,G)→ Hom(F ,G)〈2〉[−1]→ 0.
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Now take the long exact sequence in cohomology. Part of this sequence is

· · · → Hom(F ,G〈2〉[−2])→ Hom(F ,G)→ Hom(For(F),For(G))

→ Hom(F ,G〈2〉[−1])→ · · · .
If F and G are perverse, the first and last terms above vanish. We conclude that

Hom(F ,G)→ Hom(For(F),For(G))

is an isomorphism. �

8. Constructibility

We have seen in Example 3.6 that Dmix
mon(X ,k) may contain objects “of infinite type,” i.e., for

which certain graded Hom-spaces may not be finitely generated over k. We will see more such
examples in §9, in the form of infinite-rank pro-unipotent local systems. To distinguish these
“large” objects from more manageable ones, we make the following definition.

Definition 8.1. An object F ∈ Dmix
mon(X ,k) is said to be constructible if it lies in the essential

image of Mon : Dmix(X ,k)→ Dmix
mon(X ,k).

Lemma 8.2. Let i : Z ↪→ X be the inclusion of a closed union of strata, and let j : U ↪→ X be
the complementary open inclusion. For F ∈ Dmix

mon(X ,k), the following conditions are equivalent:

(1) F is constructible.
(2) j∗F and i∗F are constructible.
(3) j∗F and i!F are constructible.

Proof. Proposition 6.7 tells us that condition (1) implies the other two conditions.
Let us now show that condition (2) implies condition (1). If j∗F and i∗F are constructible,

Proposition 6.7 implies that j!j
∗F and i∗i

∗F are as well. That is, the first and third terms of
the distinguished triangle

j!j
∗F → F → i∗i

∗F →
lie in the essential image of Mon. Since Mon is fully faithful, the connecting morphism

i∗i
∗F → j!j

∗F [1]

is in the image of Mon, and hence so is its cocone F .
The proof that condition (3) implies condition (1) is similar. �

The main result of this section is that for an R-free variety, all monodromic complexes are
constructible. Most of the work is spent on the case of a single stratum.

Proposition 8.3. Suppose Xs is an R-free stratum. Then Dmix
mon(X ,k) is generated as a trian-

gulated category by objects of the form Mon(Es)〈n〉.
Proof. In the case where k is not a field, let $ be a generator of its unique maximal ideal. The
text of the proof below is adapted to this case. The case where k is a field is slightly easier. To
obtain the proof in the field case, read the argument below with the understanding that $ = 0.
(There are some additional comments on the field case after the end of the proof.)

We introduce some additional notation related to bigraded k-modules. For a homogeneous
element m in a bigraded k-module M of bidegree

(
e
f

)
, recall that the cohomological degree is

given by |m| = e. We define its total degree by totm = e− f .
Let Hs = H•Gm

(Xs,k), and let Free(Hs) denote the category of finitely generated bigraded
free Hs-modules. It is easy to see that the functor Hom(Es,−) gives rise to an equivalence of
categories

Hom(Es,−) : ParityZ
Gm

(Xs,k)
∼→ Free(Hs).
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For the rest of this section, we identify these categories. Thus, the categories Dmix
Gm

(Xs,k),

Dmix(Xs,k), and Dmix
mon(Xs,k) all consist of objects of Free(Hs) with additional data. In this

language, an object of Dmix
mon(X ,k) is a pair (M, δ), where M ∈ Free(Hs), and

δ : R∨ ⊗M → R∨ ⊗M [1]

is an R∨ ⊗ Hs-module homomorphism satisfying δ2 = Θ · id.
Given such an object (M, δ), we wish to prove that it lies in the subcategory generated by

objects of the form

Mon(Es)〈n〉 = (Hs〈n〉 ⊕ Hs〈n− 2〉[1], [ r
ξ ]) .

We proceed by induction on the rank of M (as a free Hs-module). Of course, if M has rank 0,
there is nothing to prove.

If M has rank > 0, the argument is lengthy but elementary. We will set up quite a lot
of notation related to a basis for M . We will then consider two different cases involving the
behavior of δ in this basis.

Step 1. Set-up and notation. Choose a homogeneous Hs-basis a1, . . . , an for M , and assume
that a1 has maximal total degree among these basis elements. Let t = tot a1 and b = |a1|. Write
the differential of a1 in terms of this basis as

(8.1) δ(a1) =

n∑
i=1

ciai where ci ∈ R∨ ⊗ Hs and

{ |ci|+ |ai| = b+ 1,

tot ci + tot ai = t+ 1.

Now, all elements of R∨ ⊗ Hs have even, nonnegative cohomological and total degrees. Since
t ≥ tot ai for all i, we see that in any term with ci 6= 0, we must have tot ci ≥ 2, and hence

|ai| ≤ b+ 1

|ai| ≡ b+ 1 (mod 2)
and

tot ai ≤ t− 1

tot ai ≡ t− 1 (mod 2).

Assume that the basis elements meeting these degree conditions are a2, . . . , ad. (Of course, a1

cannot satisfy these conditions.)
Since Hs is concentrated in total degree 0, we see that any element c ∈ R∨⊗Hs with positive

total degree must be divisible by r. This applies to every nonzero coefficient in (8.1). Factor
these coefficients as ci = rc′i, where c′i ∈ R∨ ⊗ Hs satisfies |c′i| = |ci| and tot c′i = tot ci − 2.

Break up (8.1) as

δ(a1) = rD1 + rD2 + rD3 + rD4

where

D1 =
∑

2≤i≤d
|ai|=b+1

tot ai=t−1

c′iai D2 =
∑

2≤i≤d
|ai|=b−1

tot ai=t−1

c′iai D3 =
∑

2≤i≤d
|ai|≤b−3

tot ai=t−1

c′iai D4 =
∑

2≤i≤d
tot ai≤t−3

c′iai

The coefficients c′i in D4 still have positive total degree, so we have

D4 ∈ r(R∨ ⊗M).

On the other hand, every nonzero coefficient c′i ocurring in D1, D2, or D3 has total degree 0,
and thus lies in Hs. Since Hs is free as an R-module, we can decompose it as an R-module as
Hs ∼= R⊕ C. Let

a = C ⊕ ξ2R.

Note that as a k-module, we have Hs ∼= k⊕ kξ ⊕ a. It is easy to see from this that a is actually
an ideal in Hs. All homogeneous elements of cohomological degree ≥ 4 lie in a. The coefficients
in D3 have cohomological degree ≥ 4, so

D3 ∈ a(R∨ ⊗M).
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In D2, the coefficients c′i belong to H2
s = H2

Gm
(Xs,k), which is homogeneous of bidegree

(
2
2

)
. We

have H2
s = kξ ⊕ (a ∩ H2

s), so we can rewrite D2 as

D2 = D′2 +D′′2

where
D′2 =

∑
2≤i≤d
|ai|=b−1

tot ai=t−1

b′iξai, b′i ∈ k and D′′2 =
∑

2≤i≤d
|ai|=b−1

tot ai=t−1

b′′i ai, b′′i ∈ a ∩ H2
s.

In particular, we have
D′′2 ∈ a(R∨ ⊗M).

Lastly, in D1, the coefficients c′i ∈ Hs have cohomological degree 0, so they belong to k. We are
now done setting up the needed notation.

Step 2. Assume that some coefficient in D1 is a unit in k. Without loss of generality, suppose
c′2 is a unit. Let

a′2 =

d∑
i=2

c′iai = r−1δ(a1).

Because c′2 is a unit in k, the set {a1, a
′
2, a3, . . . , an} is still a basis for M . In this new basis, we

have δ(a1) = ra′2, and hence δ2(a1) = rξa1 = rδ(a′2). Since multiplication by r is an injective
map, it follows that δ(a′2) = ξa1.

Let M ′ = spanHs
{a3, a4, . . . , an}, and decompose M as

M = Hsa
′
2 ⊕ Hsa1 ⊕M ′.

The observations above show that with respect to this decomposition, the differential δ can be
written in the form

δ =

 r f ′2
ξ f1

δ′


for suitable maps f ′2, f1, and δ′. We see that (M, δ) is the cone of the map

f =

[
f ′2
f1

]
: (M ′[−1],−δ′)→ Mon(Es[−b− 1]〈b− t+ 2〉).

Since M ′ has smaller rank than M as an Hs-module, we are done.
Step 3. Assume that no coefficient in D1 is a unit in k. In this case, every coefficient c′i in

D1 belongs to the maximal ideal of k, and hence

D1 ∈ $(R∨ ⊗M).

Now let
a′2 = ξ−1D′2 =

∑
2≤i≤d
|ai|=b−1

tot ai=t−1

b′iai and a′1 = δ(a′2).

so that ξa′1 = δ(D′2). Expand a′1 in our basis as

a′1 =

n∑
i=1

eiai with ei ∈ R∨ ⊗ Hs.

Note that deg a′1 = deg a1, and hence that deg e1 =
(

0
0

)
. In other words, e1 is an element of k.

We claim that it is invertible. If it were not invertible, we would have

a′1 ∈ $(R∨ ⊗M) + spanR∨⊗Hs
{a2, . . . , an},
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and hence that

δ2(a1) = r(δ(D1) + δ(D′2) + δ(D′′2 ) + δ(D3) + δ(D4))

= r(δ(D1) + ξa′1 + δ(D′′2 ) + δ(D3) + δ(D4))

∈ r$(R∨ ⊗M) + ra(R∨ ⊗M) + r2(R∨ ⊗M) + spanR∨⊗Hs
{a2, . . . , an}.

But δ2(a1) = rξa1 does not belong to the right-hand side, and we have contradiction. Thus, e1

is a unit. It follows that {a′1, a2, . . . , an} is still a basis for M .
Next, we claim that some coefficient b′i in a′2 is a unit in k. If not, we would have a′2 ∈ $M , and

hence a′1 ∈ $M as well, contradicting the fact that a′1 is part of a basis for M . Assume without
loss of generality that a2 occurs in a′2, and that b′2 is a unit. We conclude that {a′1, a′2, a3, . . . , an}
is still a basis for M .

Let M ′ = spanHs
{a3, a4, . . . , an}, and decompose M as

M = Hsa
′
1 ⊕ Hsa

′
2 ⊕M ′.

Note that δ(a′1) = δ2(a′2) = rξa′2. Thus, with respect to this decomposition, the differential δ
can be written in the form

δ =

 1 g′1
rξ g′2

δ′


Let

(M0, δ0) =

(
Hs[−b]〈b− t〉 ⊕ Hs[−b+ 1]〈b− t〉,

[
1

rξ

])
.

As in the previous case, we see that (M, δ) is the cone of the map

g =

[
g′1
g′2

]
: (M ′[−1],−δ′)→ (M0, δ0).

We claim that (M0, δ0) is homotopic to 0. Indeed, we have

idM0
= δ0h+ hδ0 where h =

[
0 0
1 0

]
.

We conclude that (M, δ) is isomorphic in Dmix
mon(Xs,k) to (M ′, δ′). Since M ′ has smaller rank

than M as an Hs-module, we are done. �

In the case where k is a field, the headings of Steps 2 and 3 of the preceeding proof can be
simplified to “Assume that D1 6= 0” and “Assume that D1 = 0,” respectively, and the second
paragraph of Step 3 discusses the claim that a′2 6= 0.

Theorem 8.4. If X is R-free, then the monodromy functor

Mon : Dmix(X ,k)→ Dmix
mon(X ,k)

is an equivalence of categories.

Proof. Since Mon is fully faithful, we just need to show that it is essentially surjective. We
proceed by induction on the number of strata. If X consists of a single stratum, this follows
from Proposition 8.3. Otherwise, let i : Xs ↪→ X be the inclusion of a closed stratum, and let
j : X r Xs ↪→ X be the inclusion of its complement. Consider the distinguished triangle

j!j
∗F → F → i∗i

∗F → .

By induction, j∗F and i∗F both lie in the image of Mon, and then by Lemma 8.2, so does F . �
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9. Jordan block local systems

9.1. Motivation: the punctured plane. The set-up of the paper includes the assumption that
every Gm-equivariant local system on each Xs is trivial. But if we drop the Gm-equivariance,
there may well be nontrivial local systems. A motivating example is the case X = A1 r {0},
equipped with the standard action of Gm. The constant sheaf kA1r{0} admits no Gm-equivariant
self-extensions, but if we drop the Gm-equivariance, then it does admit self-extensions. The local
systems obtained by repeated self-extensions of the constant sheaf are those with unipotent
monodromy.

The analogue of this phenomenon in the mixed modular setting is based on the fact that

(9.1) HomDmix(A1r{0},k)(k,k〈−2〉[1]) ∼= k.

It is possible to prove this directly in Dmix(A1 r {0},k). Below, we will see how to deduce this
from a computation in Dmix

mon(A1 r {0},k).

Since H•Gm
(A1 r {0},k) = k, the category ParityZ

Gm
(A1 r {0},k) is equivalent to the category

of finite-rank bigraded free k-modules. For any object F ∈ ParityZ
Gm

(A1 r {0},k), we have

Θ · idF = 0. In this language, an object of dgmix
S,Θ(A1 r {0},k) is a pair (M, δ), where M is a

finite-rank free bigraded k-module, and δ : R∨⊗M → R∨⊗M [1] is an R∨-linear map such that
δ2 = 0.

In other words, dgmix
S,Θ(A1r{0},k) is simply the dgg category whose objects are bounded chain

complexes of finitely generated free R∨-modules. Let R∨-gmod denote the abelian category of
finitely generated graded R∨-modules. We can then identify

(9.2) Dmix
mon(A1 r {0},k) ∼= Db(R∨-gmod).

Under this equivalence, the free module R∨ corresponds to the shifted constant sheaf k{1} on
A1 r {0}. For brevity, let us denote this parity sheaf by

k = kA1r{0}{1}.

Let us write down some specific objects Dmix
mon(A1 r {0},k). For n ≥ 1, let

Jn(k) ∈ Dmix
mon(A1 r {0},k)

be the object given by

Jn(k) = k〈−2n〉[1] k[1]
rn·id

.

Note that J1(k) ∼= Mon(k). Under (9.2), the chain complex Jn(k) becomes a free resolution of

the R∨-module k[r]/(rn). For every n ≥ 1, there is a nonsplit distinguished triangle

Jn(k)〈−2〉 r−→ Jn+1(k)→ Mon(k)→,

corresponding to the short exact sequence of R∨-modules

0→ k[r]/(rn)〈−2〉 → k[r]/(rn+1)→ k→ 0.

In particular, when n = 1, we get a nonsplit distinguished triangle

Mon(k)〈−2〉 r−→ J2(k)→ Mon(k)→ .

This shows that Hom(Mon(k),Mon(k)〈−2〉[1]) is at least nonzero. To see that it is isomorphic

to k (as was claimed in (9.1)), observe that Ext1
R∨(k,k〈−2〉) ∼= k.

Morally, Jn(k) should be thought of as a local system whose monodromy is a unipotent Jordan
block of size n. These objects clearly lie in the image of Mon, so “unipotent Jordan block local
systems” exist in Dmix(A1 r {0},k) as well.
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But in Dmix
mon(A1 r {0},k), it also makes to consider the object

J (k)

whose underlying graded parity sheaf is just k, equipped with the zero differential. The graded
endomorphism ring of this object is infinitely generated over k: we have⊕

n∈Z
Hom(J (k),J (k)〈n〉) ∼= End(J (k)) ∼= R∨.

Remark 3.3 implies that J (k) does not lie in the image of Mon.

Morally, J (k) should be thought of as an infinite-rank local system; it is the pro-unipotent

projective cover of the constant sheaf Mon(k) in the category of local systems.

9.2. Jordan block functors. We will now generalize the construction of the preceding subsec-
tion to an arbitrary R-trivial variety. As above, for any parity sheaf F on an R-trivial variety, we
have Θ · idF = 0. Thus, objects of dgmix

S,Θ(X ,k) or Dmix
mon(X ,k) are pairs (F , δ) where δ ∈ EndS(F)

satisfies δ2 = 0.
Suppose now that (F , δ) is an object of dgmix

Gm
(X ,k). The obvious map End(F) → EndS(F)

induced by ιR∨ : k→ R∨ lets us regard (F , δ) as an object of dgmix
S,Θ(X ,k). We have just defined

a functor J : dgmix
Gm

(X ,k)→ dgmix
S,Θ(X ,k). Passing to homotopy categories, we obtain a functor

J : Dmix
Gm

(X ,k)→ Dmix
mon(X ,k).

Next, for any n ≥ 1, define Jn : dgmix
Gm

(X ,k)→ dgmix
S,Θ(X ,k) by

Jn(F , δ) = F〈−2n〉[1] F

[1]

−δ

[1]
rn

[1]

δ

.

Again, passing to homotopy categories, we obtain a functor

Jn : Dmix
Gm

(X ,k)→ Dmix
mon(X ,k).

Comparing with (5.6), we see that there is a natural isomorphism

J1(F) ∼= Mon(For(F)).

Informally, Jn should be thought of as “tensoring with a unipotent Jordan block local system
of rank n,” and J should be thought of as “tensoring with the pro-unipotent projective cover of
the constant sheaf.”

Proposition 9.1. Assume that X is R-trivial, and let F ∈ Dmix
Gm

(X ,k).

(1) There are natural isomorphisms

Coi(J (F)) ∼= F and J1(F) ∼= Mon(For(F)).

(2) There are natural isomorphisms

J (DF) ∼= (D(JF))〈2〉[−1] and Jn(DF) ∼= (D(JnF))〈2− 2n〉.
(3) For any n ≥ 1, there is a functorial distinguished triangle

J (F)〈−2n〉
Nn
J (F)−−−−→ J (F)→ Jn(F)→ .

(4) For any n,m ≥ 1, there is a functorial distinguished triangle

Jn(F)〈−2m〉 → Jn+m(F)→ Jm(F)→ .

These statements are all immediate consequences of the definitions. The details are left to
the reader.
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10. The nearby cycles formalism

In this section, we define the nearby cycles functor and discuss its main properties. We also
discuss two additional related functors, the maximal extension functor and the vanishing cycles
functor, following the organization of ideas in [B2, Re].

10.1. The nearby cycles functor. Let Gm act on A1 by a nontrivial character z 7→ zc. Assume
that the integer c is invertible in k. This implies that the equivariant cohomology

H•Gm
(A1 r {0},k)

is trivial.
With respect to this action, suppose that we have a Gm-equivariant map

f : X → A1.

Let Xη = f−1(A1 r 0), and let X0 = f−1(0). As usual, we use the stacky notation X0 = X0/H
and Xη = Xη/H. Let

i : X0 ↪→ X and j : Xη ↪→ X
be the inclusion maps. We add the following assumptions:

(1) Each stratum Xs is contained in either X0 or Xη.
(2) The variety X0 is R-free.

We also have:

(3) The variety Xη is R-trivial.

This is not an extra assumption, but rather a consequence of the conditions above. Indeed, for
parity sheaves F and G on Xη, the action of R on Hom(F ,G) factors through H•Gm

(A1r{0}) ∼= k.
We define the nearby cycles functor

Ψf : Dmix
Gm

(Xη,k)→ Dmix(X0,k)

by the formula

Ψf (F) = Mon−1i∗j∗J (F)〈−2〉.
Note that Theorem 8.4 tells us that i∗j∗J (F) ∈ Dmix

mon(X0,k) is automatically constructible, and
that it makes sense to apply the inverse functor of Mon.

The Tate twist 〈−2〉 in the formula above is included for compatibility with the literature.
To elaborate, when k is a field of characteristic 0, this Tate twist corresponds to the operation
that is usually denoted by (1) in the context of mixed `-adic sheaves or mixed Hodge modules
(see [AR1, §6.1]). The Tate twist above thus matches that in (1.3), and the Tate twists in a
number of statements below (such as Propositions 10.3, 10.7, and 10.9) match those in [M].

Lemma 10.1. For F ∈ Dmix
Gm

(Xη,k), there is a natural isomorphism

Ψf (F) ∼= Mon−1i!j!J (F)〈−2〉[1].

Proof. The functorial distinguished triangles

j!J (F)→ j∗J (F)→ i∗i
∗j∗J (F)→

and

i∗i
!j!J (F)→ j!J (F)→ j∗J (F)→

show that there is a natural isomorphism i!j!J (F)[1] ∼= i∗j∗J (F). The result follows. �
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Lemma 10.2. For F ∈ Dmix
Gm

(Xη,k), there are natural distinguished triangles

Ψf (F)
N−→ Ψf (F)〈2〉 → i∗j∗For(F)→,

i!j!For(F)→ Ψf (F)
N−→ Ψf (F)〈2〉 → .

Proof. These triangles are obtained by applying Mon−1i∗j∗ and Mon−1i!j!, respectively, to the
distinguished triangle in the third part of Proposition 9.1. �

Proposition 10.3. For any F ∈ Dmix
Gm

(Xη,k), there is a natural isomorphism

DΨf (F) ∼= Ψf (DF)〈2〉.

Proof. Using Proposition 9.1 and Lemma 10.1, we have

DΨf (F) = D(Mon−1i∗j∗J (F)〈−2〉) ∼= Mon−1i!j!D(J (F))〈2〉
∼= Mon−1i!j!J (DF)[1] ∼= Ψf (DF)〈2〉,

as desired. �

Hypothesis 10.4. The functors j!, j∗ : Dmix
Gm

(Xη,k) → Dmix
Gm

(X ,k) are t-exact for the perverse
t-structure.

Since j is the base change of the inclusion of the affine open subset (A1 r {0}) ↪→ A1,
it is an affine morphism. If we were working in the ordinary (nonmixed) derived category
Db

c (X ,k), Hypothesis 10.4 would then follow from [BBD, Corollaire 4.1.3]. When k is a field of
characteristic 0 (and under some additional assumptions on X ), Hypothesis 10.4 can likely be
proved using the techniques of [AR1].

Hypothesis 10.4 will be proved for some key examples in [ARd2]. It remains open in general
for now.

Theorem 10.5. If Hypothesis 10.4 holds, then the functor Ψf : Dmix
Gm

(Xη,k) → Dmix(X0,k) is
t-exact for the perverse t-structure.

Proof. Let pHi denote cohomology with respect to the perverse t-structure, and consider the
map pHi(N) : pHi(Ψf (F)) → pHi(Ψf (F)〈2〉). If this map is either injective or surjective, the
same is true for any power pHi(Nn) : pHi(Ψf (F)) → pHi(Ψf (F)〈2n〉). But by Remark 3.3, we
have Nn = 0 for n� 0. We conclude that if pHi(N) is either injective or surjective, then in fact
pHi(Ψf (F)) = 0.

Now let F be a perverse sheaf in Dmix
Gm

(Xη,k), and consider the long exact perverse cohomology
sequence for the distinguished triangle j!F → j∗F → i∗i

∗j∗F →. Hypothesis 10.4 implies that
pHi(i∗j∗F) vanishes unless i = −1, 0. The long exact cohomology sequence associated to the
distinguished triangle from Lemma 10.2 then shows that pHi(N) is surjective for i > 0 and
injective for i < 0. Therefore, pHi(Ψf (F)) = 0 unless i = 0. �

10.2. The maximal extension functor. For F ∈ PervGm
(Xη,k), let Ξ̃f (F) be the cone of the

natural map j!J (F)〈−2〉 N−→ j∗J (F). In other words, we have a distinguished triangle

(10.1) j!J (F)〈−2〉 N−→ j∗J (F)→ Ξ̃f (F)→ .

Lemma 10.6. The assignment F 7→ Ξ̃f (F) defines a functor PervGm
(Xη,k) → Dmix

mon(X ,k).
Moreover, there are natural isomorphisms

j∗Ξ̃f (F) ∼= Mon(For(F)), i∗Ξ̃f (F) ∼= i∗j∗J (F), i!Ξ̃f (F) ∼= i!j!J (F)〈−2〉[1].

In particular, Ξ̃f (F) is constructible.
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Proof. Let f : F → G be a morphism in PervGm
(Xη,k), and consider the diagram

j!J (F)〈−2〉 j∗J (F) Ξ̃f (F)

j!J (G)〈−2〉 j∗J (G) Ξ̃f (G)

N

j!J (f)〈−2〉 j∗J (f) h

N

To show that Ξ̃f is a functor, it is enough to show that h is unique. We will show this below.

Applying j∗ to (10.1), we see that j∗Ξ̃f (G) is the cone of J (G)〈−2〉 N−→ J (G). By Propo-

sition 9.1, we conclude that j∗Ξ̃f (G) ∼= Mon(For(G)). The uniqueness of h above follows
from [BBD, Proposition 1.1.9] and the following computation:

Hom(j!J (F)〈−2〉, Ξ̃f (G)[−1]) ∼= Hom(J (F)〈−2〉, j∗Ξ̃f (G)[−1])

∼= Hom(J (F)〈−2〉,Mon(For(G))[−1])

∼= Hom(Coi(J (F))〈−2〉,G[−1])

∼= Hom(F〈−2〉,G[−1]) = 0.

Here, the last step follows from the fact that F〈−2〉 and G both lie in the heart of the perverse
t-structure.

The descriptions of i∗Ξ̃f (F) and i!Ξ̃f (F) are obtained by applying i∗ and i! to (10.1). These

objects are constructible by Theorem 8.4. By Lemma 8.2, we conclude that Ξ̃f (F) is con-
structible. �

We define the maximal extension functor

Ξf : PervGm(Xη,k)→ Dmix(X ,k) by Ξf (F) = Mon−1(Ξ̃f (F)).

By Lemma 10.6, there is a natural isomorphism j∗Ξf (F) ∼= For(F).

Proposition 10.7. For F ∈ PervGm
(Xη,k), there are natural distinguished triangles

j!F
α−−−→ Ξf (F)

β−−−→ i∗Ψf (F)〈2〉 →,

i∗Ψf (F)
β+−−→ Ξf (F)

α+−−→ j∗F →

such that α+ ◦ α− is the canonical map j!F → j∗F , and β− ◦ β+ = N : Ψf (F)→ Ψf (F)〈2〉.
If Hypothesis 10.4 holds, Ξf is an exact functor PervGm

(Xη,k) → Perv(X ,k), and these are
triangles are short exact sequences.

Proof. Let α̂+, α̂−, β̂+, and β̂− be the maps indicated in the natural distinguished triangles
below:

j!j
∗Ξ̃f (F)

α̂−−−→ Ξ̃f (F)
β̂−−−→ i∗i

∗Ξ̃f (F)→,

i∗i
!Ξ̃f (F)

β̂+−−→ Ξ̃f (F)
α̂+−−→ j∗j

∗Ξ̃f (F)→,

The distinguished triangles in statement of the proposition are obtained by applying Mon−1 to
the triangles above, and then using the information from the end Lemma 10.6. It is clear from
this construction that α+ ◦ α− is the natural map j!F → j∗F .

Next, we must show that β− ◦ β+ = N. Since β+ is induced by the adjunction i∗i
! → id, our

problem is equivalent to showing that i!β− is the map induced by N. To see this, we will study
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the following natural octahedral diagram:

(10.2)

j!Mon(F) i∗i
∗j∗J (F)

j!J (F)

j!J (F)〈−2〉 j∗J (F)

[1]

[1]

[1]

N

j!Mon(F) i∗i
∗j∗J (F)

Ξ̃f (F)

j!J (F)〈−2〉 j∗J (F)

[1]

α̂−

[1]

[1]

β̂−

Apply Mon−1i! to the diagram above. The resulting octahedron can be rewritten as shown
below, using the definition of Ψf along with Lemmas 10.1 and 10.6:

(10.3)

i!j!F Ψf (F)〈2〉

Ψf (F)〈2〉

Ψf (F) 0

id

[1]

[1]

N

[1]

i!j!F Ψf (F)〈2〉

Ψf (F)

Ψf (F) 0

[1]

id

i!β−
[1]

[1]

Let us spell out these identifications we have made above in a bit more detail. The left-hand
distinguished triangle in the upper cap of (10.3) comes from Lemma 10.2. To see that the map
labelled “id” in the upper cap is indeed the identity map, observe that the proof of Lemma 10.1
involves the corresponding distinguished triangle in (10.2). Similarly, the arrow labelled “id” in
the lower cap of (10.3) comes from the proof of Lemma 10.6. The fact that i!β− = N comes
from the equality of the two paths from the center of the lower cap to the center of the upper
cap in (10.3).

Finally, if Hypothesis 10.4 holds, the last assertion in the proposition is clear. �

Lemma 10.8. For F ∈ PervGm
(Xη,k), there is a natural isomorphism DΞf (F) ∼= Ξf (DF).

Moreover, D exchanges the two natural distinguished triangles in Proposition 10.7.

Proof. By Proposition 9.1, applying D to (10.1) yields the distinguished triangle

DΞ̃f (F)→ j!J (DF)〈−2〉[1]
N−→ j∗J (DF)[1]→ .

We therefore have DΞ̃f (F) ∼= Ξ̃f (DF). The reasoning in Lemma 10.6 shows that this isomor-
phism is natural. The present lemma easily follows from this. �

10.3. The vanishing cycles functor. In this subsection, we assume Hypothesis 10.4 through-
out.

Recall from Proposition 7.4 that the category PervGm
(Xη,k) can be identified with a full sub-

category of Perv(Xη,k). Consider the category of “generically Gm-equivariant perverse sheaves,”
defined by

PervGm,η(X ,k) = {F ∈ Perv(X ,k) | j∗F lies in PervGm
(Xη,k)}.

This is a full abelian subcategory of Perv(X ,k) (but it is not, in general, a Serre subcategory).
Given F ∈ PervGm,η(X ,k), consider the natural maps

γ− : j!(F|Xη
)→ F and γ+ : F → j∗(F|Xη

).

Consider also the maps α− : j!(F|Xη
)→ Ξf (F|Xη

) and α+ : Ξf (F|Xη
)→ j∗(F|Xη

) from Propo-
sition 10.7. These maps satisfy α+ ◦ α− = γ+ ◦ γ−. Therefore, the diagram

Φ̃f (F) =

(
j!(F|Xη

)
[
α−
γ− ]
−−−→ (Ξf (F|Xη

)⊕F)
[α+ −γ+ ]−−−−−−−→ j∗(F|Xη

)

)
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can be regarded as a chain complex of perverse sheaves concentrated in degrees −1, 0, and 1. The
terms in this chain complex are all exact functors of F , so the assignment F 7→ Φ̃f (F) is an exact
functor from PervGm,η(X ,k) to the abelian category of chain complexes over PervGm,η(X ,k).

Moreover, since α− is injective and α+ is surjective, the chain complex Φ̃f (F) has cohomology

only in degree 0. The functor F 7→ H0(Φ̃f (F)) is an exact functor

PervGm,η(X ,k)→ PervGm,η(X ,k).

Finally, note that j∗Φ̃f (F) can be identified with

F|Xη

[ id
id

]
−−→ (F|Xη

⊕F|Xη
)

[ id −id ]−−−−−→ F|Xη

This chain complex is acyclic. In other words, j∗H0(Φ̃f (F)) = 0, so Φ̃f (F) is supported on X0.
We define the vanishing cycles functor

Φf : PervGm,η(X ,k)→ Perv(X0,k) by Φf (F) = i∗H0(Φ̃f (F)).

Next, consider the following diagram:

(10.4)

j∗(F|Xη
)

i∗Ψf (F|Xη
) Ξf (F|Xη

)⊕F i∗Ψf (F|Xη
)〈2〉

j!(F|Xη
)

[ β+

0
] [ β− 0 ]

[α+ −γ+ ]

[
α−
γ− ]

If we regard each column as a chain complex of perverse sheaves (with the first and third columns
concentrated in degree 0), then the horizontal maps are chain maps. Let us take their induced
maps in cohomology: we define

can : Ψf (F|Xη
)→ Φf (F), can = i∗H0([ β+

0
]),

var : Φf (F)→ Ψf (F|Xη
)〈2〉, var = i∗H0([ β− 0 ])

Proposition 10.9. Assume that Hypothesis 10.4 holds. The vanishing cycles functor

Φf : PervGm,η(X ,k)→ Perv(X0,k)

is exact, and the natural transformations

can : Ψf → Φf and var : Φf → Ψf 〈2〉

satisfy var ◦ can = N. Moreover, for any F ∈ PervGm,η(X ,k) there are natural distinguished
triangles

Ψf (F|Xη
)

can−−→ Φf (F)→ i∗F →,

i!F → Φf (F)
var−−→ Ψf (F|Xη

)〈2〉 → .

Proof. The fact that var◦can = N follows from the fact that β− ◦β+ = N (see Proposition 10.7).
Next, consider the following diagram, in which the columns are chain complexes of perverse
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sheaves, and the horizontal maps are chain maps:

(10.5)

j∗(F|Xη
) j∗(F|Xη

)

Ξf (F|Xη
) Ξf (F|Xη

)⊕F F

j!(F|Xη
) j!(F|Xη

)

id

[ id
0

]

α+

[ 0 id ]

[α+ −γ+ ]

[
α−
γ− ]

id

γ−

This is a natural short exact sequence of chain complexes, so it determines a natural distinguished
triangle in the derived category DbPerv(X ,k). Via a “realization” functor in the sense of [BBD,
§3.1] or [B1], it determines a natural distinguished triangle in Dmix(X ,k).

Moreover, by Proposition 10.7, the first column of (10.5) is canonically isomorphic to

i∗Ψf (F|Xη
).

The last column is canonically isomorphic to i∗i
∗F . This diagram thus gives rise to the first

distinguished triangle in the statement of the proposition. The construction of the second dis-
tinguished triangle is very similar. �

Lemma 10.10. For any object F ∈ PervGm,η(X ,k), there is a natural isomorphism

DΦf (F) ∼= Φf (DF).

Moreover, D exchanges the two natural distinguished triangles in Proposition 10.9.

Proof. By Lemma 10.8, the chain complex Φ̃f (F) is self-dual under Verdier duality, so

DΦf (F) ∼= Φf (DF).

Then, one checks that the dual of the diagram (10.5) is naturally isomorphic to the diagram
used to define the second distinguished triangle in Proposition 10.9. �

11. Examples

We conclude the paper with a couple of examples. See [ARd2] for full details and further
generalizations.

11.1. The identity map. As in Example 3.1, let X = A1, stratified as the union of X0 = {0}
and X1 = A1 r{0}. Let f : X → A1 be the identity map. In this case, the nearby cycles functor

Ψf : Dmix
Gm

(A1 r {0},k)→ Dmix(pt,k)

is an equivalence of categories. It is t-exact, but it does not preserve weights: we have

Ψf (k{1}) ∼= kpt〈−1〉.
To see this, one can first check that j!J (k{1}) is the object described in Example 3.6. It follows
that

i!j!J (k{1})〈−2〉[1] ∼=

(
kpt〈−1〉 kpt〈−3〉[1][1]

ξ·id

[1]

r·id

)
∼= Mon(kpt〈−1〉).

For any F ∈ Dmix
Gm

(A1 r {0},k), the endomorphism N : Ψf (F)→ Ψf (F)〈2〉 is zero.
The maximal extension of the constant sheaf is given by

Ξf (kA1r{0}{1}) = kpt〈1〉 kA1{1} kpt〈−1〉[1]
η

[1]

−ξ̄·id

[1]
ε
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where η and ε are the adjunction maps. This object is a “tilting perverse sheaf” in the sense
of [BBM]. See [BBM, Remark 1.1(ii)], and see [AMRW1, Example 4.6.4] for a related object in
the context of flag varieties.

11.2. The product map on A2. Let X = A2. Let H = Gm, and let H act on X by

z · (x1, x2) = (zx1, z
−1x2).

We also take a second copy of Gm and let it act on X by z · (x1, x2) = (x1, zx2). Stratify X by
the orbits of the Gm ×H-action. There are four strata, which we denote by

pt = {(0, 0)}, X1 = (A1 r {0})× {0}, X2 = {0} × (A1 r {0}),
U = (A1 r {0})× (A1 r {0}).

Next, let f : X → A1 be the map f(x1, x2) = x1x2. This map is Gm ×H-equivariant, where H
acts trivially on A1. Note that Xη = U , and X0 = f−1(0) is the union of the other three strata.
Again, Ψf is t-exact. It can be shown that

Ψf (k{2}) ∼= kpt (kX1
{1} ⊕ kX2

{1})〈−1〉 kpt〈−2〉[1]

[
η1
−η2 ]

[1]

−ξ̄·id

[1]

[ ε1 −ε2 ]

Here, the ηi and εi are appropriate unit and counit maps. They satisfy

ε1η1 + ε2η2 = ξ ∈ Hom(kpt,kpt{2}) = H2
Gm×H(pt,k).

The monodromy endomorphism can be read off this picture using Proposition 5.7. This object
is closely related to the object described in [G, §1.2.3]. See [ARd2] for further details.
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