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A POLYNOMIAL GENERALIZATION OF THE EULER CHARACTERISTIC

FOR ALGEBRAIC SETS.

MIGUEL A. MARCO-BUZUNÁRIZ

WITH AN APPENDIX BY J. V. RENNEMO

Abstract. We present a method to compute the Euler characteristic of an algebraic subset of

Cn. This method relies on classical tools such as Gröbner basis and primary decomposition.

The existence of this method allows us to define a new invariant for such varieties. This
invariant is related to the problem of counting rational points over finite fields. In an appendix,

Jørgen Vold Rennemo proves the relation between this invariant and the Chern-Schwartz-
MacPherson class of the variety.

1. Introduction

One of the main invariants of a topological space is its Euler characteristic. It was initially
defined for cell complexes, but several extensions have been defined to more general classes
of spaces. In the setting of complex algebraic varieties, the natural extension is the Euler
characteristic with compact support. In [8] Szafraniec gives a method to compute the Euler
characteristic of a complex algebraic set by using methods from the real geometry. Aluffi gave
in [1] another method based on the computation of Chern-Schwartz-MacPherson classes. In
this paper, we present another method, that only makes use of the basic properties of the
Euler characteristic, and classical results on algebraic sets. This way of computing the Euler
characteristic gives naturally a stronger invariant, which we define.

The method works as follows. Consider V ⊆ Cn an irreducible algebraic set of dimension d
and degree g. Take a generic linear projection π : Cn → Cd. If we consider π restricted to V , it
is a g : 1 branched cover. The branching locus ∆ and its preimage π |−1

V (∆) can be computed.
From the additivity and the multiplicativity for covers of the Euler characteristic, we have the
following formula:

χ(V ) = g · χ(Cd)− g · χ(∆) + χ(π |−1
V (∆)).

So the computation of χ(V ) is reduced to the computation of the Euler characteristic of algebraic
sets of lower dimension, allowing us to use a recursion process.

In the previous method, we make use of the fact that χ(Cd) = 1. If instead of making this
substitution, we keep track of χ(Cd) as a formal symbol, we obtain a stronger invariant F (V ).
This invariant is defined as a polynomial in Z[L], which turns out to coincide with the counting
polynomial defined by Plesken in [6], and has some interesting properties: the dimension, degree,
and Euler characteristic of an algebraic set can be computed from this polynomial. It also gives
information on the number of points on some varieties over finite fields. This relation with finite
varieties could be used to compute this invariant by counting points.

In Sections 2 and 3 we show the preliminary results that prove the correctness of the method
to compute the Euler characteristic, and describe the algorithm. Section 4 is devoted to the
generalization of this method to the new invariant, which is also defined and some of its properties
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are shown. This invariant is defined after both the variety and the used projection, although
we conjecture that, assuming general position, every projection would give the same result,
making the invariant independent of the projection. After the first version of this paper was
made public, Jørgen Vold Rennemo contacted the author proposing a way to prove the main
conjecture. His proof consists on showing that this invariant is directly related to the Chern-
Schwartz-MacPherson class of the variety. This proof is included in the appendix.

The extension of this invariant to projective varieties is discussed in Section 5. In Section 6 we
include some examples. In particular, we show that in the case of hyperplane arrangements this
invariant coincides with the characteristic polynomial. Finally, the relationship of the invariant
with the number of points over finite fields is shown in Section 7. As an annex, Section 8 includes
an implementation of the algorithms in Sage together with some timings.

2. Theoretical justification

Let V = V (I) ⊆ Cn be the algebraic set determined by a radical ideal I. Without loss of
generality, we can assume that it is in general position (in the sense that we will precise later).
By computing the associated primes of I we obtain the decomposition in irreducible components
V = V1 ∪ · · · ∪ Vc. The Euler characteristic χ(V ) can be expressed as χ(V1) − χ((V1) ∩ (V2 ∪
· · · ∪ Vc)) + χ(V2 ∪ · · · ∪ Vc). The variety (V1) ∩ (V2 ∪ · · · ∪ Vc) is an algebraic set of lower
dimension. So, by a double induction argument (over the dimension and over the number of
irreducible components), we may reduce the problem of computing χ(V ) to the case where V is
either zero-dimensional or irreducible.

If V is zero-dimensional, it consists of a number of isolated points, and its Euler characteristic
equals the number of points. This number of points can be computed as the degree of the
homogenization of the radical of I (which can be computed via the Hilbert polynomial, see [3,
Chapter 5] for example).

For the case of an irreducible variety V = V (I) ⊆ Cn being I E C[x1, . . . , xn] a radical ideal
of Krull dimension d, we will distinguish the homogeneous case from the non homogeneous.

If I is a homogeneous ideal, the variety V has a conic structure (it is formed by a union of lines
that go through the origin). It means that V is contractible and hence its Euler characteristic
is 1.

For the non homogeneous case, consider the projection

π : Cn → Cd
(x1, . . . , xn) 7→ (x1, . . . xd)

We may assume (applying a generic linear change of coordinates if necessary) that the fol-
lowing condition is satisfied:

Definition 1. Consider Ih E C[x0, x1, . . . , xn] the homogenization of I. We will say that I is

in general position if
√
Ih + (x0, x1, . . . , xd) ⊇ (x0, x1, . . . , xn).

Theorem 2. The previous condition is satisfied by any ideal I after a generic linear change of
variables. Moreover, when this condition is satisfied the map π restricted to V is surjective.

Proof. If we consider the projectivization V̄ ⊆ CPn, the projection π consists of taking as a
center the n − d − 1 dimensional subspace S = {[x0 : x1 : · · · : xn] | x0 = x1 = · · · = xd = 0}.
Since the dimension of V̄ is d, the intersection V̄ ∩S is generically empty. We may hence assume
that after a generic linear change of variables, S ∩ V̄ = ∅. This intersection is given precisely by
the ideal

√
Ih + (x0, x1, . . . , xd), which is homogeneous. The condition of V̄ ∩ S being empty is

equivalent to the ideal I being in general position.
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In this situation the preimage by π |V of a point [1 : x1 : · · · : xd] is given by the intersection
of the subspace {[y0 : y1 : · · · : yn] | y1 = y0x1, . . . , yd = y0xd} with V̄ . By the genericity
assumption, this intersection does not have points in the infinity. By dimension arguments, this
intersection cannot be empty, and must be contained in the affine part of V̄ . We have then
proved that π restricted to V is surjective.

�

The intersection of a generic linear subspace of dimension n−d with V̄ is a union of g distinct
points, g being the degree of Ih. This degree can be computed through the Hilbert polynomial.
Since I is in general position, all of the intersections of V̄ with the fibers of π will happen in the
affine part. This means that π restricted to V is a branched cover of degree g. We will see now
that the branching locus of this cover is contained in a subvariety of Cd that can be computed.

Assume I = (f1, . . . , fs) is in general position. Consider the matrix

M :=


∂f1
∂xd+1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂xd+1

· · · ∂fs
∂xn


and the ideal J generated by its (n− d)× (n− d) minors.

Theorem 3. The branching locus of π |V is contained in the zero locus of the elimination ideal
(I + J) ∩ C[x1, . . . , xd].

Proof. Consider a point p = (x1, . . . , xn) ∈ V . If the linear space π−1(π(p)) intersects V at
p transversely, then there is no ramification at p, since it means that at a neighborhood of p
the map π |V is a diffeomorphism. This condition of transversality can be expressed as follows:
the complex normal space of V in p and the complex normal space of π−1(π(p)) generate the
complex tangent space of Cn in p. We can identify in a natural way the complex tangent space
of Cn in p with the vector space Cn itself. The complex normal space of V in p is generated by
the rows of the matrix 

∂f1
∂x1

(p) · · · ∂f1
∂xn

(p)
...

. . .
...

∂fs
∂x1

(p) · · · ∂fs
∂xn

(p)

 .

The complex normal space of π−1(π(p)) is generated by the first d vectors of the canonical basis.
A Gaussian elimination argument tells us that these two spaces generate the whole space if and
only if the matrix M has rank (n−d). So the set of points of V where π |V ramifies is contained
in the set S of zeros of I + J .

The zero set of the elimination ideal C[x1, . . . xd] ∩ (I + J) is the Zariski closure of π(S).
�

Since V \ π−1(π(S)) is a cover over Cd \ π(S) of degree g, we have that

χ(V ) = χ(V \ π−1(π(S))) + χ(V ∩ π−1(π(S))) = g · χ(Cd \ π(S)) + χ(V ∩ π−1(π(S))) =

= g · (χ(Cd)− χ(π(S))) + χ(V ∩ π−1(π(S))) = g − g · χ(π(S)) + χ(V ∩ π−1(π(S))).

Both π(S) and V ∩ π−1(π(S)) are varieties of dimension smaller than V , so, by induction
hypothesis, we can compute their Euler characteristic in the same form.
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3. Description of the algorithm

Now we will describe, step by step, an algorithm to compute the Euler characteristic of the
zero set of an ideal I = (f1, . . . , fs).

Algorithm 1. (Compute the Euler characteristic of the algebraic set defined by the ideal I):

(1) Check if I is homogeneous. If it is, return 1.
(2) Compute the associated primes (I1, . . . , Im) of I (see [3, Chapter 4]).
(3) If there is more than one associated prime, we have that

χ(V (I)) = χ(V (I1)) + χ(V (I2 ∩ · · · ∩ Im))− χ(V (I1 + (I2 ∩ · · · ∩ Im))).

by recursion, each summand can be computed with this algorithm. The following parts
of this algorithm consider only the irreducible case, since we have already computed the
associated primes, we will assume that I1 is prime.

(4) Compute the dimension d and the degree g of V (I). If d is zero, return g.
(5) Check that I is in general position. This can be done by computing a Gröbner basis of√

Ih + (x0, x1, . . . , xd) (where Ih is the homogenization of I) and using it to check that
xd+1, . . . , xn are in it. If it is not in general position, apply a generic linear change of
variables and start again the algorithm.

(6) Construct the ideal J generated by the (n− d)× (n− d) minors of the matrix

M :=


∂f1
∂xd+1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂xd+1

· · · ∂fs
∂xn

 .

(7) Compute the elimination idealK = (I+J)∩C[x1, · · · , xd] (this can be done by computing
a Gröbner basis w.r.t. an elimination ordering).

(8) Compute by recursion χ(V (K)) and χ(V (I+K)). Return the number g−g ·χ(V (K))+
χ(V (I +K)).

4. A finer invariant

The previous method essentially consists in decomposing our variety V in pieces, each of
which is compared to Ci through linear maps that are unbranched covers. At the end of the day,
it gives us a linear combination (with integer coefficients), of the Euler characteristic of Ci.

Now we will show that we can actually keep the information in this linear combination, defining
a slightly different invariant. This information will be kept in a polynomial Fπ(V ) ∈ Z[L], where
Li will play the role of χ(Ci)

We follow the same method as before but with two differences:

• If the ideal I is homogeneous, we don’t end returning a 1. Instead, we continue the
algorithm, taking as Ih the ideal generated by I inside C[x0, . . . , xn].

• In the final step, we return g · Ld − g · Fπ(V (K)) + Fπ(V (I + K))) instead of g − g ·
χ(V (K)) + χ(V (I +K)).

So the algorithm results like this:

Algorithm 2. (Compute the polynomial Fπ(V ) associated to an algebraic set V (I) in general
position).

(1) Compute the associated primes (I1, . . . , Im) of I.
(2) If there is more than one associated prime, we have that

Fπ(V (I)) = Fπ(V (I1)) + Fπ(V (I2 ∩ · · · ∩ Im))− Fπ(V (I1 + (I2 ∩ · · · ∩ Im))).



118 M.A. MARCO-BUZUNÁRIZ

by recursion, each summand can be computed with this algorithm. The following parts
of this algorithm consider only the irreducible case, since we have already computed the
associated primes, we will assume that I1 is prime.

(3) Compute the dimension d and the degree g of V (I). If d is zero, return g.
(4) Construct the ideal J generated by the (n− d)× (n− d) minors of the matrix

M :=


∂f1
∂xd+1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂xd+1

· · · ∂fs
∂xn

 .

(5) Compute the elimination ideal K = (I + J) ∩ C[x1, · · · , xd].
(6) Compute by recursion Fπ(V (K)) and Fπ(V (I + K)). Return the polynomial gLd − g ·

Fπ(V (K)) + Fπ(V (I +K)).

Note that both algorithms 1 and 2 can run differently if we apply a linear change of coordinates
to I (which would change the projection π). The topological properties of the Euler characteristic
tells us that the final result of the algorithm 1 will coincide with the Euler characteristic regardless
of this linear change of coordinates. But in the case of Fπ(V ) we cannot ensure such a result.
Nevertheless, for two sufficiently generic projections, algorithm 2 will follow the same exact steps,
so we can define F (V ) as the polynomial obtained by the algorithm 2 for generic projections.

More precisely, there must exist a Zariski open set T ⊆ GL(n,C) such that, the polynomial
Fπ(σ(V (I))) is the same for every linear change of coordinates σ ∈ T .

Definition 4. Given an ideal I E C[x1, . . . , xn], we define the polynomial F (V (I)) as the
polynomial Fπ(σ(V (I)) for any σ ∈ T .

We will say that I or V (I) are in generic position, or that we are in generic coordinates
if Fπ(V (I)) = F (V (I)).

Since so far we have no algorithmic criterion to determine if a projection is generic enough
or not, the generic case can be computed by introducing the parameters of the projection,
and computing the Gröbner basis with those parameters. Experimental evidence suggested the
following conjecture:

Conjecture 1. If an ideal is in general position, it is also in generic position.

Remark 5. Note that this conjecture is equivalent to saying that, assuming general position, the
polynomial F (V ) is an invariant of V . That is: it does not depend on the projection.

Shortly after the first version of this paper was made public, Jørgen Vold Rennemo proved
that the polynomial F (V ) contains essentially the same information as the Chern-Schwartz-
MacPherson class. This result proves the conjecture, since the CSM class is an invariant of the
variety. His proof is included in the appendix at the end of this document.

Some partial results in this direction are easy to show.

Lemma 6. If V in in general position, the leading term of Fπ(V ) coincides with the leading
term of F (V ).

Proof. It is immediate to check that the degree of Fπ(V ) coincides with the dimension of V , and
that the leading coefficient of Fπ(V ) coincide with the degree of V , regardless of the projection
used to compute it. �

Remark 7. The value of Fπ(V ) at L = 1 equals χ(V ), independently of the choices of projections
made for its computation, as long as we are in general position.
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These two results actually show that F (V ) is independent of the projection for the case of
curves (since in this case it is a degree 1 polynomial whose leading term and value at 1 are fixed).

We will now show that the invariant Fπ behaves well with respect to the product of varieties:

Proposition 8. Let I1 E C[x1, . . . , xn] and I2 E C[y1, . . . , ym] be two ideals on polynomial rings
with separated variables, and let V1 ⊆ Cn and V2 ⊆ Cm be their corresponding algebraic sets of
dimensions d1 and d2 respectively. Consider the ideal

I := I1 + I2 E C[x1 . . . , xd1 , y1, . . . , yd2 , xd1+1, . . . , xn, yd2+1, . . . , ym].

Its corresponding algebraic set is V = V1 × V2 ⊆ Cn × Cm = Cn+m. Denote by π1 : V1 → Cd1
the map defined by the projection on the first coordinates. Analogously, denote π2 : V2 → Cd2
and π : V → Cd1+d2 . Then Fπ(V ) = Fπ1

(V1) · Fπ2
(V2).

Proof. Without loss of generality, we can assume that we are in the irreducible case. We will
work on induction over the dimension. If V1 or V2 are zero dimensional, the result is immediate.

Consider g1, g2 the degrees of V1 and V2, and g the degree of V . It is easy to check that
g = g1 · g2. Is is also immediate to check that, if V2 = Cm, the statement holds (that is,
Fπ(V1 × Cm) = Fπ(V1) · Lm). Consider also ∆1,∆2 and ∆ the branching loci of π1,π2 and π
respectively.

Now we will show that ∆ = (∆1 × Cd2) ∪ (Cd1 ×∆2). Let

p = (x1, . . . , xd1 , y1, . . . , yd2) ∈ Cd1 × Cd2 .

The set of points in V that project on p is the product of the set of points in V1 that project
in (x1 . . . , xd1) and the set of points in V2 that project in (y1, . . . , yd2). This set has less than
g1 · g2 points if and only if (x1, . . . , xd1) ∈ ∆1 or (y1, . . . , yd1) ∈ ∆2. It is immediate also that
(∆1 × Cd2) ∩ (Cd1 ×∆2) = ∆1 ×∆2. By induction hypothesis, we have that

Fπ(∆) = Ld2 · Fπ1
(∆1) + Ld1 · Fπ2

(∆2)− Fπ1
(∆1) · Fπ2

(∆2).

Reasoning analogously, we can conclude that

Fπ(π−1(∆)) = Fπ1
(π1
−1(∆1))·Fπ2

(V2)+Fπ2
(π2
−1(∆2))·Fπ1

(V1)−Fπ1
(π1
−1(∆1))·Fπ2

(π2
−1(∆2)).

So, summarizing, we have that

Fπ(V ) = g1g2(Ld1+d2 − Fπ(∆)) + Fπ(π−1(∆))
Fπ1

(V1) = g1(Ld1 − Fπ1
(∆1)) + Fπ1

(π1
−1(∆1))

Fπ2
(V2) = g2(Ld2 − Fπ2

(∆2)) + Fπ2
(π2
−1(∆2)).

Using all the previous formulas one can easily check that Fπ(V ) = Fπ1
(V1) · Fπ2

(V2). �

Since conjecture 1 is true, the same result is true for F (V ). In fact, a weaker condition is
enough: if the product of two generic projections is generic, then the invariant F is multiplicative.
This could be useful, for example, to give a criterion to check if an algebraic set can be the product
of two nontrivial algebraic sets. If F (V ) is irreducible in Z[L], then V couldn’t be a product.

5. The projective case

To compute the Euler characteristic of the projective variety V̄ defined by a homogeneous ideal
Ih E C[x0, . . . , xn] we can also use algorithm 1. In order to do so, we will consider the hyperplane
H “at infinity” given by the equation x0 = 0. This allows us to decompose V̄ as its affine part
V := V̄ \H and its part at infinity V̄∞ := V̄ ∩H. It is clear that χ(V̄ ) = χ(V ) + χ(V̄∞).

The affine part V is an affine variety defined by the ideal obtained by substituting x0 = 1 in
the generators of Ih, whose Euler characteristic can be computed as seen before.
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The part at infinity V̄∞ is a projective variety embedded in a projective space of less dimen-
sion. The homogeneous ideal that defines it is obtained by substituting X0 = 0 in the generators
of Ih. Its Euler characteristic can be computed by recursion. If we are in the case of CP1, V̄
will consist on a finite number of points, which can be computed as the degree of

√
Ih.

This same idea of decomposing a projective variety as a disjoint union of affine pieces can be
used to extend the definition of Fπ to projective varieties. The invariant of a projective variety
is defined as the sum of the invariant of its affine pieces.

Now we will show a different way to compute the Euler characteristic of a projective variety
using the polynomial F (V ).

Theorem 9. Let I = C[x0, . . . , xn] · (f1, . . . , fs) be a homogeneous ideal in generic position.
Assume that the generators f1, . . . , fs are homogeneous. Denote by I0 := (I + C[x0, . . . , xn] ·
(x0)) ∩C[x1, . . . , xn], and I1 := (I + C[x0, . . . , xn] · (x0 − 1)) ∩C[x1, . . . , xn]. That is, the ideals
that represent the intersection of V (I) with the hyperplanes {x0 = 0} and {x0 = 1} respectively,
seeing the two hyperplanes as ambient spaces. Then the following formula holds:

F (V (I)) = (L− 1) · F (V (I1)) + F (V (I0))

Proof. By induction on the dimension of V (I). If the dimension is zero, V (I) must consist only
on the origin, since I is homogeneous. In this case, V (I1) is empty, and V (I0) is also the origin.
We have that

1 = F (V (I)) = (L− 1) · 0 + 1 = (L− 1) · F (V (I1)) + F (V (I0)).

If the dimension d of V (I) is positive, consider the ideals J,K and H = I + K as before.
Construct also H0, H1,K0 and K1 in the same way as I0 and I1. Note that, since we are in generic
position, the ideals H ′0 and K ′0 needed to compute F (V (I0)) are precisely H0 and K0 (that is,
specializing x0 = 0 and then computing the minors of the matrix M and the elimination ideal
is the same as computing the minors of the matrix and the elimination and then specializing).
The same happens with J1 and K1.

By induction hypothesis, we have that

F (V (H)) = (L− 1) · F (V (H1)) + F (V (H0))

and

F (V (K)) = (L− 1) · F (V (K1)) + F (V (K0)).

Now we have that

F (V (I)) = g · Ld − g · F (V (K)) + F (V (H)) =

g · Ld − g · ((L− 1) · F (V (K1)) + F (V (K0))) + (L− 1) · F (V (H1)) + F (V (H0)) =

(L− 1) · (g · Ld−1 − g · F (V (K1)) + F (V (H1))) + g · Ld−1 − g · F (V (K0)) + F (V (H0)) =

(L− 1) · F (V (I1)) + F (V (I0)),

and this proves the result. �

This theorem allows us to relate the invariant F of the affine algebraic set defined by a
homogeneous ideal, and the invariant F of the projective variety defined by the same ideal as
follows:
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Corollary 10. Let I be a homogeneous ideal in C[x1, . . . , xn] in generic position. Let V be
the algebraic set defined by I, and V ′ the projective variety defined by the same ideal. Then
F (V ) = (L− 1) · F (V ′) + 1.

Proof. Applying the previous result recursively, we have that F (V (I)) equals

(L− 1) · F (V (I1)) + (L− 1) · F (V ((I0)1)) + · · ·

+(L− 1) · F (V ((· · · (I0) · · · )0)1)) + F (V ((· · · (I0) · · · )0)).

Note that, if we compute F (V ′) through the sum of the affine pieces, we obtain precisely
F (V (I1)) + F (V ((I0)1)) + · · · + F (V ((· · · (I0) · · · )0)1)). Since V ((· · · (I0) · · · )0)) consists only
of the origin, we have the result.

This last result can be interpreted as the fact that V is the complex cone over V ′. That is,
V \ {0} is the product V ′ × C∗.

�

6. Examples

Both the polynomial F (V ) and the Hilbert polynomial PI have the same degree, and the
leading term is determined by the degree of V . This would point in the direction of considering
that they contain the same information. The following example shows this is not the case:

Example 11. Consider the conics C1, C2 ∈ C2 given by C1 := V (x2 + y2 − 1) and C2 :=
V (x2 + y2). If we compute the Hilbert polynomial of the corresponding homogeneous ideals in
C[x, y, z] we get that P(x2+y2+z2) = P(x2+y2) = 2 · t+ 1.

Let’s now compute the polynomial V (C1) using the canonical projection π : C2 → C to the
first component. This projection is a 2 : 1 cover of C branched along the points ±1. Over each of
these points, there is only one preimage. So finally we have that F (C1) = 2(L−2)+1+1 = 2L−2.

On the other hand, the curve C2 also projects 2 : 1 over C, but now there is only one branching
point (x = 0). So the result is F (C2) = 2(L− 1) + 1 = 2L− 1.

That is, this example shows that the polynomial F (V ) contains information that is not con-
tained in the Hilbert polynomial.

An important example of algebraic sets is the case of hyperplane arrangements. We will now
recall some related notions (see [5, Chapter II]).

Definition 12. Let A be a hyperplane arrangement in Cn. Its intersection lattice L(A) is the
set of all its intersections ordered by reverse inclusion, with the convention that the intersection
of the empty set is Cn itself.

The Mbius function is the only function µ : L→ Z satisfying that:

µ(Cn) = 1∑
Y≤X µ(Y ) = 0 ∀X ∈ L \ {Cn}.

Definition 13. The characteristic polynomial of A is defined as

χ(A, L) :=
∑

X∈L(A)

µ(X) · Ldim(X).

Theorem 14 (Deletion-Restriction). Let A be a hyperplane arrangement in Cn, and H a hy-
perplane of A. Let A′ be the arrangement resulting from eliminating H from A, and let A′′ be
the hyperplane arrangement inside H induced by the intersection with A′. Then the following
formula holds:

χ(A, L) = χ(A′, L)− χ(A′′, L).
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Now we will see how this characteristic polynomial relates to the polynomial F (V ).

Theorem 15. Let A be a hyperplane arrangement in Cn. The following holds:

F (A) = Ln − χ(A, L).

Proof. By induction on the number of hyperplanes. The case of only one hyperplane is immedi-
ate.

If there are more than one hyperplane, take one hyperplane H of A. Since A = A′ ∪H, we
have, by additivity, that

F (A) = F (A′) + F (H)− F (A′ ∩H) = F (A′) + Ln−1 − F (A′′).

Both A′ and A′′ are hyperplane arrangements with less hyperplanes than A, so, by induction
hypothesis the following formulas hold:

F (A′) = Ln − χ(A′, L)
F (A′′) = Ln−1 − χ(A′′, L).

Substituting these formulas in the previous one, and using the deletion-restriction theorem we
get the result. �

This result tells us that the characteristic polynomial of A can be thought of as the polynomial
F of its complement. If we consider a projective arrangement A and its affine cone Â, we can
use Corollary 10 to relate χ(Â, L) and F (A). The result in the appendix then relates F (A) with
the Chern-Schwartz-MacPherson class of its complement. This way we obtain a new proof of
the formula in [2, Theorem 3.1].

7. Counting points over finite fields

In this section we will see how the polynomial F (V ) can be related to the number of points
of the variety considered over a finite field. Let’s illustrate this fact with an example.

Example 16. Consider the conic given by the equation

x2
1 + x2

2 − 1

in the affine plane over the field of 5 elements F5.
The set of rational points is the following:

(0, 1), (0, 4), (1, 0), (4, 0)

If we project it to the x1 axis, we see that over the point (0), we have two preimages, as
expected by the degree. Over the points (1) and (4), we have just one point of the curve, since
the cover ramifies there. But over the points (2) and (3) we have no points of the curve. The
reason for this is that the equations 22 +x2

2− 1 and 32 +x2
2− 1 have no roots over F5. However,

they do have all their solutions over a quadratic extension F25 of degree 2. In particular, if we
look at the points of F5 × F25 that satisfy the equation, we obtain the set

{(0, 1), (0, 4), (1, 0), (2, a+ 2), (2, 4a+ 3), (3, a+ 2), (3, 4a+ 3), (4, 0)},

where a is an element of F25 that has minimal polynomial x2 + 3 over F5.
It might seem strange to consider the set of points in F5 × F25 that satisfy a given equation.

But this set is in fact an algebraic set. Indeed, it can be expressed as the set of points of the
affine plane over F25 that satisfy the equations

x2
1 + x2

2 − 1
x5

1 − x1
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Recall that the polynomial F (V ) for such a conic was f = 2L − 2. In this case, we have
obtained 8 points in total, which is precisely the value of f for L = 5. A quick look at the points
shows why this happens: there are two points over each value of F5, with the exception of the
two branching points, where there is only one.

Note that both algorithms 1 and 2 can be run over finite fields in the same way as they
run over the rationals. With a small exception, though: to ensure the existence of a change
of coordinates that puts the ideal in general position, we might need to work in a finite field
extension. Once done that, both algorithms would mimic the steps given by the algorithm run
over Q, except if some leading coefficient becomes zero. But that would happen only for a finite
number of prime numbers p.

Notation 17. We can then define the polynomial Fp(V ) as the result of running algorithm 2
in a field of characteristic p.

As we have seen before, Fp(V ) = F (V ) for almost every prime number p.

Notation 18. Given a polynomial

f = a0 + a1L+ a2L
2 + · · ·+ anL

n ∈ Z[L]

and a list of numbers (d1, . . . , ds) with s ≥ n, we will denote by f(d1, . . . , ds) the number

f(d1, . . . , ds) = a0 + a1d1 + a2d1d2 + · · ·+ and1d2 · · · dn
Another difference between the way the algorithms would run over Q and over finite fields

lies in the primary decomposition. But then again, this will only happen for a finite number of
primes.

Theorem 19. Given an ideal I E Fp[x1, . . . , xn], and the corresponding f := Fp(V ) of degree
s, there exists a list of numbers (d1 ≤ · · · ≤ dn) such that the number of points in(

Fpd1 × · · · × Fpdn
)
∩ V (I)

equals the number f(pd1 , . . . , pdn).
Moreover, for any such list (d1 ≤ · · · ≤ dn) and any d′i multiple of di there exists another list

(d1 ≤ · · · ≤ di−1 ≤ d′i ≤ d′i+1 ≤ · · · ≤ d′n) satisfying the same property.

Proof. By induction over the dimension. If I is zero dimensional, V (I) consists of Fp(V ) = deg(I)
distinct points, whose coordinates lie in a sufficiently big extension Fpd1 . Any sequence starting
with d1 would satisfy the theorem.

If I has dimension d > 0 and degree g, we have that Fp(V (I)) = g(Ld − Fp(V (K))) +
Fp(V (I + K)). By induction, we can assume that both K and I + K satisfy the result. Let
(d1

1 ≤ · · · ≤ d1
d) and (d2

1 ≤ · · · ≤ d2
n) be the corresponding sequences. Take d1 = lcm(d1

1, d
2
1).

There exist two sequences (d1 ≤ d1
2
′ ≤ · · · ≤ d1

d
′
) and (d1 ≤ d2

2
′ ≤ · · · ≤ d2

n
′
) that are valid for K

and I +K respectively, and coinciding in the first term. Repeating this reasoning we can obtain
two sequences (d1 ≤ · · · ≤ dd) and (d1 ≤ · · · ≤ dd ≤ dd+1 ≤ · · · ≤ dn) that are valid for K and
I +K respectively.

Note that, since both Fp(V (K)) and Fp(V (I +K)) are of dimension at most d− 1, the terms
dd, . . . , dn can be changed arbitrarily and still the sequence would be valid for K and I +K.

Now take any point q := (q1, . . . , qd) ∈ (Fpd1 ×· · ·×Fpdd )\V (K). Taking an appropriate field
Fpnq , we can ensure that there are exactly g points in {(x1, . . . , xn) ∈ (Fpnq )n | x1 = q1, . . . , xd =
qd} ∩ V . We can do the same for every point q, and take a common field extension Fps of all
the different Fpnq . This way, we have that there are exactly g points of V ∩ (Fpd1 × · · · × Fpdd ×
Fps × · · · × Fps) over each point of (Fpd1 × · · · × Fpdd ) \ V (K).
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By definition, we have that

Fp(V ) = g(Ld − Fp(V (K))) + Fp(V (I +K)).

Now if we restrict ourselves to the points in Fpd1 × · · · × Fpdd × Fps × · · · × Fps , we have that

#V = g · (pd1pd2 · · · pdd −#V (K)) + #V (I +K).

Making use of the induction hypothesis, and the fact that Fp(V (K)) and Fp(V (I + K)) are of
dimension less than d, the result follows easily.

�

Corollary 20. Let V be an algebraic set in Cn defined by an ideal I E K[x1, . . . , xn], where
K is an algebraic extension of Q. Then for almost every prime p there exists a list of positive
integers (d1,p, . . . , dn,p) such that the number of points in(

Fpd1,p × · · · × Fpdn,p

)
that satisfy the equations of I equals the number F (V (I))(pd1,p , . . . , pdn,p).

This corollary provides a different way to compute the polynomial F (V (I)) by counting points
over finite fields. If we know the value of F (V (I))(S) for a sufficient number of such sequences
S, recovering the coefficients of the polynomial is a simple linear algebra problem.

8. Code and timings

Here we show an implementation in Sage ([7]) of the two algorithms. This same code can be
found at http://www.sagenb.org/home/pub/3961.

8.1. Implementation of Algorithm 1.

def Euler_characteristic(I):

R=I.ring()

if I.is_one():

return 0

if R.ngens()==1:

return sum([j[0].degree() for j in I.gen().factor()])

J1=I.radical()

if J1.is_homogeneous():

return 1

primdec=J1.associated_primes()

J1=primdec[0]

m=len(primdec)

if m>1:

J2=R.ideal(1)

for j in [1..m-1]:

J2=J2.intersection(primdec[j])

return Euler_characteristic(J1)+Euler_characteristic(J2)-Euler_characteristic(J1+J2)

P=J1.homogenize().hilbert_polynomial()

if P.is_zero():

deg=0

else:

deg=P.leading_coefficient()*P.degree().factorial()

if deg==1:

return 1

http://www.sagenb.org/home/pub/3961
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dim=J1.dimension()

n=R.ngens()

vars1=R.gens()[0:n-dim]

vars2=R.gens()[n-dim:n]

varpiv=vars1[-1]

IH=J1.homogenize()

S=IH.ring()

JH=IH+S.ideal(S.gens()[n-dim:])

if JH.dimension()>0:

det=0

while det==0:

MH=random_matrix(R.base_ring(),n)

det=MH.determinant()

L=list(MH*vector(list(R.gens())))

return Euler_characteristic(R.hom(L)(J1))

if dim==0:

return deg

M=matrix([[f.derivative(v) for v in vars1] for f in J1.gens()])

J=R.ideal(M.minors(n-dim))

K=(J+J1).elimination_ideal(vars1)

S=PolynomialRing(R.base_ring(),vars2)

H=R.hom([S(0) for j in vars1]+[S(j) for j in vars2])

C=deg-deg*Euler_characteristic(H(K))+Euler_characteristic(K+J1)

return C

This algorithm may be very slow (since it involves several Gröbner basis computations), but
in several interesting cases, it gives a useful answer in reasonable time. Let’s show here some
examples.

In the case of curves and surfaces, the result is often reasonably fast; but it may vary a lot
if a random change of variables has to be applied. Here we show a few examples. These tests
have been run on a Dual-Core AMD Opteron 8220.

Three examples of plane curves:

sage: R.<x,y>=QQ[]

sage: time Euler_characteristic(R.ideal(x^5+1))

5

Time: CPU 0.16 s, Wall: 0.17 s

sage: time Euler_characteristic(R.ideal(y^4+x^3-1))

-5

Time: CPU 0.19 s, Wall: 0.20 s

time Euler_characteristic(R.ideal(x^2+y^2-5*x^2*y^4+x*y-1))

-8

Time: CPU 17.82 s, Wall: 17.82 s

A curve and a surface in C3:

S.<x,y,z>=QQ[]

time Euler_characteristic(S.ideal(x^5+y^2+2*x*y+1,3*x-5*y*x+y^2+1))

10

Time: CPU 0.17 s, Wall: 0.18 s

time Euler_characteristic(S.ideal(x^5+y^2+2*x*y+1))

-3
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Time: CPU 0.49 s, Wall: 0.49 s

8.2. Implementation of Algorithm 2.

@parallel(7)

@cached_function

def FV(I,var=’L’):

FS=PolynomialRing(ZZ,var)

L=FS.gen()

R=I.ring()

if R.ngens()==0:

return 0

if I.is_zero():

return L^R.ngens()

if I.is_one():

return 0

if R.ngens()==1:

return FS(sum([j[0].degree() for j in I.gen().factor()]))

J1=I.radical()

if J1.is_homogeneous():

S1=PolynomialRing(R.base_ring(),R.gens()[0:-1])

H1=R.hom(list(S1.gens())+[S1(1)])

H2=R.hom(list(S1.gens())+[S1(0)])

resulp=FV([H1(J1),H2(J1)])

d=dict([[a[0][0][0],a[1]] for a in resulp])

[i1,i2]=[d[H1(J1)],d[H2(J1)]]

return (L-1)*(i1)+i2

primdec=J1.associated_primes()

J1=primdec[0]

m=len(primdec)

if m>1:

J2=R.ideal(1)

for j in [1..m-1]:

J2=J2.intersection(primdec[j])

resulp=FV([J1,J2,J1+J2])

d=dict([[a[0][0][0],a[1]] for a in resulp])

[i1,i2,i3]=[d[J1],d[J2],d[J1+J2]]

return i1+i2-i3

P=J1.homogenize().hilbert_polynomial()

if P.is_zero():

deg=0

else:

deg=P.leading_coefficient()*P.degree().factorial()

dim=J1.dimension()

if deg==1:

return FS(L^dim)

n=R.ngens()

vars1=R.gens()[0:n-dim]

vars2=R.gens()[n-dim:n]

varpiv=vars1[-1]
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IH=J1.homogenize()

S=IH.ring()

JH=IH+S.ideal(S.gens()[n-dim:])

if JH.dimension()>0:

det=0

while det==0:

MH=random_matrix(R.base_ring(),n)

det=MH.determinant()

L=list(MH*vector(list(R.gens())))

return FV(R.hom(L)(J1))

if dim==0:

return FS(deg)

M=matrix([[f.derivative(v) for v in vars1] for f in J1.gens()])

J=R.ideal(M.minors(n-dim))

K=(J+J1).elimination_ideal(vars1)

S=PolynomialRing(R.base_ring(),vars2)

H=R.hom([S(0) for j in vars1]+[S(j) for j in vars2])

d=dict([[a[0][0][0],a[1]] for a in FV([H(K),K+J1])])

[i1,i2]=[d[H(K)],d[K+J1]]

C=deg*FS(L^dim-i1)+i2

return C

This implementation makes use of the Sage framework for parallel computations, allowing to use
several processor cores at the same time to compute the intermediate steps. It also caches the
already computed results in case they would be needed later.

Note that the implementation assumes that the ideal is in generic position. Since Conjecture 1
is true, it is enough to check that it is in general position (recall that, to do so, one has to compute

the ideal
√
Ih + (x0, . . . , xd) and see if it contains all the monomials xi).

There is another way to check if the ideal is in generic position without using Conjecture 1.
Considering a ring that contains the parameters of the possible linear transformations, and
write the matrix (ai,j) whose entries are these parameters. This matrix represents a generic
linear change of coordinates, so we can apply it to our ideal and run the computation over
this ring with parameters. The Gröbner basis computations in this ring would mimic the ones
in the original one, for generic values of the parameters. Unluckily, the methods to compute
the primary decomposition do not work over rings with parameters. One way to proceed is to
compute the primary decomposition over the original ring without parameters. Then compute
the discriminant with parameters, and then choose a value for the parameters in the open part
of the Gröbner cover (see [4] for a definition and algorithm).

Again, this method can be very slow, but in some cases it is fast enough to be useful. Here
we present some of those examples:

The complex 2-sphere:

sage: R.<x,y,z>=QQ[]

sage: time FV(R.ideal(x^2+y^2+z^2-1))

2*L^2 - 2*L + 2

Time: CPU 0.07 s, Wall: 0.32 s

Another surface:

sage: time FV(R.ideal(x^3+y^3+z^3-1))

3*L^2 - 6*L + 12

Time: CPU 0.07 s, Wall: 0.29 s
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The intersection of the two:

sage: time FV(R.ideal(x^3+y^3+z^3-1,x^2+y^2+z^2-1))

6*L - 15

Time: CPU 0.08 s, Wall: 43.01 s

and their union (the timing is done after cleaning the cache of the function):

sage: time FV(R.ideal((x^3+y^3+z^3-1)*(x^2+y^2+z^2-1)))

5*L^2 - 14*L + 29

Time: CPU 0.08 s, Wall: 43.02 s

notice the additivity of the polynomial.
The Whitney umbrella:

sage: time FV(R.ideal(x*y^2-z^2))

3*L^2 - 4*L + 2

Time: CPU 0.13 s, Wall: 3.44 s

The 3-sphere:

sage: S.<x,y,z,t>=QQ[]

sage: time FV(S.ideal(x^2+y^2+z^2+t^2-1))

2*L^3 - 2*L^2 + 2*L - 2

Time: CPU 0.09 s, Wall: 0.43 s
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APPENDIX: THE POLYNOMIAL INVARIANT AS A
CHERN-SCHWARTZ-MACPHERSON CLASS

JøRGEN VOLD RENNEMO

Abstract: After a change of variables, the polynomial F (V (I)) defined in the

paper equals the Chern-Schwartz-MacPherson class of V (I) considered as a subset

of Pn.

Let X be a reduced and irreducible variety. The Chern-Schwartz-MacPherson class (ab-
breviated CSM class) is a construction which to any constructible set Y ⊆ X assigns a class
cSM (Y ) ∈ H∗(X,Z). For our purposes, the essential properties of the CSM class are the follow-
ing.

(1) If Y is complete and nonsingular and i : Y → X denotes the embedding, then cSM(Y ) =
i∗(c•(TY ) ∩ [Y ]).

(2) If Y is a disjoint union of constructible sets Y1, Y2, then cSM(Y ) = cSM(Y1) + cSM(Y2).
(3) Let f : X → Z be a proper morphism of reduced and irreducible varieties, and as-

sume that restricted to Y the morphism f is set-theoretically g-to-1. Then the relation
f∗(cSM(Y )) = g · cSM(f(Y )) holds.

For the construction and general properties of CSM classes, see [Fu, Ex 19.1.7] or [Mac]. What
we call cSM(Y ) corresponds in the notation of these references to c∗(1Y ), where 1Y : X → Z is
the characteristic function of Y .

Identify the homology group H∗(Pn,Z) with Z[Q]/(Qn+1), letting Qd correspond to the class
of a linear d-dimensional subspace Pd ⊆ Pn. Note that this is strictly an isomorphism of abelian
groups and is not compatible with any of the usual multiplicative structures on the groups. We
can now state the result.

Proposition. Let I be an ideal as in Definition 4 of the paper, and consider V (I) as a locally
closed subset of Pn via the standard compactification Cn ⊂ Pn. After the change of variables
L→ 1 +Q, the equation F (V (I)) = cSM (V (I)) holds.

Proof. Let V = V (I). As F (V ) is defined by Algorithm 2 of the paper, it suffices to show that
after the variable change L → (1 + Q) and replacing Fπ with cSM everywhere, this algorithm
gives a computation of cSM (V ). The only steps that need justification in this setting are Steps
2, 3 and 6. The second listed property of the CSM class implies that the inclusion-exclusion
principle holds for cSM, and so the relation in Step 2 is valid. The CSM class of a point is the
ordinary class of the point, showing the validity of Step 3.

It remains to justify Step 6, in other words we must verify that

cSM(V ) = g(1 +Q)d − g cSM(V (K)) + cSM(V (I +K)).

In what follows we shall consider algebraic sets which can be considered as subsets of more
than one variety. In order to compare the CSM classes with respect to the different inclusions,
we introduce the following notation: If Y is an algebraic subset of X, denote by cXSM (Y ) the
CSM class of Y considered as a subset of X, i.e. so that cXSM(Y ) is an element of H∗(X).

Let Cd ⊂ Pn be a linear space, and compute cP
n

SM(Cd) by

cP
n

SM(Cd) = cP
n

SM(Pd)− cP
n

SM(Pd−1) = (1 +Q)d,

where the last step follows from the first property of the CSM class.
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Now, let π : V → Cd be the restriction of a generic projection π′ : Cn → Cd, and let U ⊆ Cd
be the complement of V (K) as defined in the algorithm. Theorem 3 of the paper shows that
over U the map π is g-to-1. In view of the computation of cP

n

SM(Cd), the justification of Step 6
now amounts to showing the relation

cP
n

SM(V ) = g(cP
n

SM(Cd)− cP
n

SM(Cd \ U)) + cP
n

SM(π−1(Cd \ U)),

which is equivalent to

(8.1) cP
n

SM(V ) = g cP
n

SM(U) + cP
n

SM(π−1(Cd \ U)).

Let X be the blow up of Pn along the Pn−d−1 that is the centre of the projection π′ : Cn → Cd,
and let p : X → Pn be the blowup morphism. Since π′ is generic, for dimension reasons we
may assume that the centre of the projection is disjoint from the closure V of V in Pn. Let
π′′ : X → Pd be the unique extension of π′ to X. We thus have the following diagram.

Cd Pd

Cn X PnV ................................................................................ .......................
.......
......

................................................................................ .......................
.......
......

........................................................................................................................................ ........
....

π

........................................................................................ ............
p

...................................................................................
.....
.......
.....

π′

................................................................................ .......................
.......
......

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................
............

................
.......

i

...................................................................................
.....
.......
.....

π′′

The left hand triangle and the square are commutative, and the right hand triangle is not.
However, when we restrict to the subgroup of H∗(X,Z) generated by cycles with support disjoint
from the exceptional divisor of p, the pushforward maps on homology satisfy i∗ ◦ π′′∗ = p∗.

We now have
cP

n

SM(V ) = p∗(c
X
SM(V )) = i∗π

′′
∗ (cXSM(V )).

The last equality follows from the fact that cXSM(V ) is the pushforward from V to X of the class

cVSM(V ), and hence it is represented by a cycle that is disjoint from the exceptional divisor in X.
We now compute

i∗π
′′
∗ (cXSM(V )) = i∗π

′′
∗ (cXSM(π−1(U))) + i∗π

′′
∗ (cXSM(π−1(Cd \ U)))

= i∗(g c
Pd

SM(U)) + p∗(c
X
SM(π−1(Cd \ U)))

= g cP
n

SM(U) + cP
n

SM(π−1(Cd \ U)),

which proves (8.1). �

I thank the referee for pointing out an important mistake in the submitted version of this
appendix.
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