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CLASSIFICATION OF CURVES ON SURFACES AND FREE LINKS VIA
HOMOTOPY THEORY OF WORDS AND PHRASES

TOMONORI FUKUNAGA

Abstract. In this paper, we introduce Turaev’s homotopy theory of words and phrases. As
new results, we give the classification of oriented ordered pointed irreducible multi-component
curves on surfaces which is called monoliteral type with at most six crossings up to stably
equivalence using Turaev’s homotopy theory of words and phrases. Moreover we also give the
classification of (oriented) ordered pointed irreducible free links of monoliteral type with at
most six crossings.

1. Introduction.

A knot is the image of a smooth embedding of S1 into R3. Further, a k-components link is
the image of a smooth embedding of the disjoint union of k circles into R3. When we study knots
and links, we often use link diagrams of links. A knot diagram is a smooth immersion of S1 into
R2 with transversal double points such that the two paths at each double point are assigned to
be the over path and the under path respectively (we call a double point of such immersion a
crossing). If a knot diagram D is obtained as the image of a knot by a projection of R3 to R2,
then we call D a diagram of the knot. A link diagram is defined similarly as a smooth immersion
of the disjoint union of circles to R2.

In the paper [14], L. Kauffman introduced the theory of virtual knots and links using combi-
natorially extended link diagrams which are called virtual link diagrams. A virtual knot diagram
is a planar graph of valency four endowed with the following structure: Each vertex either has an
overcrossing and undercrossing (in other words, real crossing) or is marked by a virtual crossing
(See Figure 3). A virtual link diagram is defined similarly. Then, we define virtual links by
the set of virtual link diagrams quotiented by an equivalence relation generated by the virtual
Reidemeister moves (see [14] for more details).

We call a virtual link diagram pointed if each component is endowed with a base point distinct
from the crossing points. Further, we call a virtual link diagram ordered if its components are
numerated. We also call a virtual link diagram flat when we ignore over/under at real crossings.
A pointed ordered flat virtual link is defined by a set of pointed ordered flat virtual link diagrams
quotiented by an equivalence relation generated by the flat virtual Reidemeister moves which
are applied away from the base points.

The theory of flat virtual links is closely related to the theory of curves on surfaces. In fact,
for all positive integer k, oriented ordered pointed k-components flat virtual links are in one to
one correspondency to stably equivalent classes of oriented ordered pointed k components curves
on surfaces (see [13] for example).

In this paper, we introduce the classification of oriented ordered pointed multi-components
curves on surfaces up to stable equivalence with some conditions. To do this, we use the theory of
nanowords which are introduced by Vladimir Turaev in [18] and [19]. Turaev defined generalized
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words and phrases which are called nanowords and nanophrases. Moreover he introduced an
equivalence relation which is called S-homotopy on a set of generalized words and he proved
that if we consider some special cases of homotopy of words and phrases, then we obtain the
theory of curves on surfaces and link diagrams on surfaces. Therefore we can use the homotopy
theory of words and phrases to study curves on surfaces and link diagrams on surfaces. Another
applications of the theory of words can be found in [11] and [12]. N. Ito studies curves on a
plane and wave fronts on a plane by using Turaev’s theory of words. See [11] and [12] for more
details.

This paper is organized as follows. In section 2, we review the theory of topology of words. We
introduce some important notions to obtain the main result. In section 3, we introduce geometric
meanings of the theory of words and phrases. We describe how to construct a bijection from
the set of stable equivalence classes of curves on surfaces to the set of homotopy classes of
nanophrases. Moreover we introduce flat virtual links. This leads us to a simple presentation of
curves on surfaces. In section 4, we introduce the classification of nanowords, nanophrases and
monoliteral phrases with some conditions on the length of words and on the number of component
of phrases, which is proved by Turaev in [18] and the author in [1], [3] and [4]. In section 5, we
introduce some homotopy invariants of nanophrases which was used to classify nanophrases. In
section 6, we introduce application of the classification theorems. As a new result, we classify
oriented ordered pointed irreducible curves on surfaces of monoliteral type with at most six
crossings up to stably equivalent. Moreover we make the list of a complete representative system
of oriented ordered pointed irreducible curves on surfaces of monoliteral type with at most
six crossings. Moreover in section 8, we give the classification of (oriented) ordered pointed
irreducible free links with at most two crossings and the classification of (oriented) ordered
pointed irreducible free links of monoliteral type with at most six crossings.

2. Turaev’s Homotopy Theory of Words and Phrases

In this section we introduce Turaev’s homotopy theory of words and phrases which was intro-
duced by V. Turaev in papers [18] and [19]. We can find a survey of Turaev’s theory of words
in the paper [20].

2.1. Étale words and nanowords. In this paper an alphabet means a finite set and a letter
means an element of an alphabet. For an alphabet A and n ∈ N, a word on A of length n is a
map w : n̂ → A where n̂ is {1, 2, · · · , n}. We denote a word of length n by w(1)w(2) · · ·w(n).
Roughly speaking, a word is a finite sequence of elements of an alphabet. We regard the map
from empty set to empty set as the word of length 0 and denote it by ∅. A phrase of length k on
A is a sequence of words w1, w2, · · · , wk on A. We denote this sequence by (w1|w2| · · · |wk). We
call the number

∑k
i=1(length of wi) number of letters of the phrase. Especially if each letter in

A appear exactly twice in a word w on A, then we call this word w a Gauss word. Similarly for
a phrase P on A if each letter in A appear exactly twice in P , then we call P a Gauss phrase
(C. F. Gauss studied topology of plane curves using Gauss words. See [6] for more details).

In [18] and [19], Turaev introduced generalized words and phrases. Let α be an alphabet
endowed with an involution τ : α → α. Then an α-alphabet is a pair of an alphabet A and a
map | · | : A → α. We call this map | · | projection and we denote the image of a letter A ∈ A
under the projection |A|. We also call |A| a projection of A. Now we define generalized words
(respectively Gauss words) which are called étale words (respectively nanowords). An étale word
over α is a pair (an α-alphabet A, a word w on A). We call the length of w length of étale word
(A, w). Especially if w is a Gauss word on A, then we call a pair (A, w) a nanoword over α.
Next we define generalized phrases (respectively Gauss phrases) which are called étale phrases
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(respectively nanophrases). An étale phrase over α is a pair (an α-alphabet A, a phrase P on
A). We call length of P the length of étale phrase (A, P ). Especially if P is a Gauss phrase on
A, then we call a pair (A, P ) a nanophrase over α.

Example 2.1. Let α be an alphabet given by {a, b} with an involution τ : α → α given by
τ(a) is equal to b. Let A be a α-alphabet given by {A,B,C} with a projection given by |A| is
equal to a and |B| and |C| are equal to b. Then a pair (A, ABCABC) is a nanoword over α of
length six. Furthermore, a pair (A, (AB|AC|BC)) is a nanophrase over α of length three with
six letters. On the other hand, a pair (A, ABCBC) is an étale word over α of length five, but not
nanoword over α since the letter A appear only once in the word ABCBC. A pair (A, ABAB)
is not nanoword, since the letter C does not appear. A pair (A − {C}, ABAB) is a nanoword
over α of length four.

2.2. S-homotopy of nanophrases and étale phrases. In the paper [18] Turaev defined
an equivalence relation on nanophrases which is called S-homotopy. This is suggested by the
Reidemeister moves in the theory on knots. In this subsection, we introduce S-homotopy theory
of words and phrases.

To define S-homotopy of nanophrases we prepare some definitions. First we define isomor-
phism of nanophrases.

Definition 2.1. Let (A1, (w1| · · · |wk)) and (A2, (v1| · · · |vk)) be nanophrases of length k over
an alphabet α. Then (A1, (w1| · · · |wk)) and (A2, (v1| · · · |vk)) are isomorphic if there exist a
bijection ϕ between A1 and A2 such that |A| = |ϕ(A)| for all A ∈ A1 and vj = ϕ(wj) for each
j ∈ k̂.

Next we define S-homotopy moves of nanophrases.

Definition 2.2. Let S be a subset of α×α×α. Then we define S-homotopy moves (H1) - (H3)
of nanophrases as follows:

(H1) (A, (xAAy)) −→ (A \ {A}, (xy))
for all A ∈ A and x, y are sequences of letters in A \ {A}, possibly including
the | character.

(H2) (A, (xAByBAz)) −→ (A \ {A,B}, (xyz))
if A,B ∈ A satisfy |B| = τ(|A|). x, y, z are sequences of letters in A \ {A,B},
possibly including the | character.

(H3) (A, (xAByACzBCt)) −→ (A, (xBAyCAzCBt))
if A,B,C ∈ A satisfy (|A|, |B|, |C|) ∈ S. x, y, z, t are sequences of letters in
A, possibly including the | character.

We call this S homotopy data.
Now we define S-homotopy of nanophrases.

Definition 2.3. Let (A1, P1) and (A2, P2) be nanophrases over α. Then (A1, P1) and (A2, P2)
are S-homotopic (denote 'S) if they are related by a finite sequence of isomorphism, S-homotopy
moves (H1) - (H3) and inverse of (H1) - (H3).

Remark 2.1. S-homotopy moves and isomorphism of nanophrases do not change length of
nanophrases. Thus for two different integers k1 and k2, a nanophrase of length k1 and a
nanophrase of length k2 are not homotopic to each other.

Especially if S is the diagonal set of α× α× α, then we call S-homotopy homotopy.
We denote the set {Nanophrases of length k over α}/(S−homotopy) by Pk(α, S) and P1(α, S)

by N (α, S).
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Example 2.2. Nanophrases (AB|ADDCBC) and (BA|CACB) with |A| = |B| = |C| ∈ α over
α are homotopic. Indeed

(AB|ADDCBC) ' (AB|ACBC) ' (BA|CACB).

Next we define S-homotopy of étale phrases. To do so, we define desingularization of étale
phrases.

For a nanophrase (A, P ) and a letter A in A, we define multiplicity of the letter A by the
number of A in the phrase P . We denote multiplicity of A by mP (A). Let Ad be an α-alphabet
{Ai,j := (A, i, j)|A ∈ A, 1 ≤ i < j ≤ mP (A)} with the projection |Ai,j | := |A| for all Ai,j .
The phrase P d is obtained from P by first deleting all A ∈ A for which mP (A) is less than or
equal to one. Then for each A ∈ A for which mP (A) is grater than or equal to two and each
i = 1, 2, . . .mP (A), we replace the i-th entry of A in P by

A1,iA2,i . . . Ai−1,iAi,i+1Ai,i+2 . . . Ai,mP (A).

The resulting (Ad, P d) is a nanophrase with
∑
mP (A)(mP (A) − 1) letters and called a desin-

gularization of (A, P ). Note that if (A, P ) is a nanophrase, then desingularization of (A, P ) is
isomorphic to itself.

Example 2.3. Let α be an alphabet. Let A be an α-alphabet given by {A,B,C} and P be a
phrase given by (AA|BB|A|C). Then desingularization of an étale phrase (A, P ) is given by

({A12, A13, A23, B12}, (A12A13A12A23|B12B12|A13A23|∅)),

with |A12| = |A13| = |A23| = |A| and |B12| = |B|.

Now we define S-homotopy of étale phrases.

Definition 2.4. Two étale phrases (A1, P1) and (A2, P2) over α are S-homotopic (denoted
(A1, P1) ' (A2, P2)) if ((A2)d, (P2)d) can be obtained from ((A1)d, (P1)d) by a finite sequence
of isomorphism, S-homotopy moves (H1) - (H3) and the inverse of moves (H1) - (H3).

Remark 2.2. By the definition of homotopy of étale phrases, every homotopy invariant I of
nanophrases extends to a homotopy invariant I of étale phrases by I(P ) := I(P d).

We recall two lemmas from [18] and [19].

Lemma 2.1 (Turaev [18], [19]). Let (α, S) be homotopy data and A be an α-alphabet. Let
A,B,C be distinct letters in A and let x, y, z, t be words in A \ {A,B,C} such that xyzt is a
Gauss phrase. Then the following (i)-(iii) hold :

(i) (A, (xAByCAzBCt)) 'S (A, (xBAyACzCBt))
if (|A|, τ(|B|), |C|) ∈ S,

(ii) (A, (xAByCAzCBt)) 'S (A, (xBAyACzBCt))
if (τ(|A|), τ(|B|), |C|) ∈ S,

(iii)(A, (xAByACzCBt)) 'S (A, (xBAyCAzBCt))
if (|A|, τ(|B|), τ(|C|)) ∈ S.

Lemma 2.2 (Turaev [18], [19]). Suppose that S∩(α×b×b) 6= ∅ for all b ∈ α. Let (A, (xAByABz))
be a nanoword over α with |B| = τ(|A|) where x, y, z are words in A \ {A,B} such that xyz is
a Gauss phrase. Then

(A, (xAByABz)) 'S (A \ {A,B}, (xyz)).
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Figure 1. The flat Reidemeister moves.

3. Geometric Interpretation of Homotopy of Nanophrases.

In this section we explain geometric interpretation of S-homotopy of nanophrases which was
introduced in the paper [19].

3.1. Stable equivalence of curves on surfaces. In this subsection we introduce stable equiv-
alence of curves on surfaces. First we define some terminologies. Through this paper a curve
means the image of a generic immersion of an oriented circle into an oriented surface. The word
“generic” means that the curve has only a finite set of self-intersections which are all double and
transversal. A k-component curve is defined in the same way as a curve with the difference that
they may be formed by k curves. These curves are called components of the k-component curve.
A k-component curve is pointed if each component is endowed with a base point (the origin)
distinct from the crossing points of the k-component curve. A k-component curve is ordered if
its components are numerated. Next we introduce an equivalence relation which is called stably
equivalence. Two ordered, pointed curves are stably homeomorphic if there is an orientation
preserving homeomorphism of their regular neighborhoods in the ambient surfaces mapping the
first multi-component curve onto the second one and preserving the order, the origins and the
orientations of the components.

Now we define stable equivalence of ordered, oriented, pointed multi-component curves [14]:
Two ordered, pointed multi-component curves are stably equivalent if they can be related by a
finite sequence of the following transformations: (i) a move replacing an ordered, pointed multi-
component curve with a stably homeomorphic one; (ii) the flat Reidemeister moves away from
the origin as in Figure 1.

We denote the set of stable equivalence classes of ordered, oriented, pointed k-component
curves by Ck.

Remark 3.1. The theory of stable equivalence of curves is closely related to the theory of virtual
strings. See [17], [21] and Section 3.3 in this paper for more details.

3.2. Geometric interpretation of S-homotopy of nanophrases. In the paper [19] Turaev
gave geometric meanings of S-homotopy of nanophrases over α with an involution τ for some α,
S and τ . More precisely, Turaev proved the following theorem.

Theorem 3.1 (Turaev [19]). There is a canonical bijection between Ck and Pk(α0, S0) where α0

is equal to {a, b} with an involution τ0 where τ0(a) is equal to b and S0 is equal to {(a, a, a), (b, b, b)}.

The way of making a nanophrase P (C) from an ordered, oriented, pointed k-component curve
C is as follows. Let us label the double points of the curve C by distinct letters A1, · · · , An.
Starting at the origin of first component of C and following along C in the positive direction,
we write down the labels of double points which we passes until return to the origin. Then we
obtain a word w1. Similarly we obtain words w2, · · · , wk on the alphabet A = {A1, · · · , An}
from second component, · · · , k-th component. Let t1i (respectively, t2i ) be the tangent vector to
C at the double point labeled Ai appearing at the first (respectively, second) passage through
this point. Set |Ai| is equal to a, if the pair (t1i , t

2
i ) is positively oriented, and |Ai| is equal to b

otherwise. Then we obtain a required nanophrase P (C) := (A, (w1| · · · |wk)).
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A

B

Figure 2. An example

Figure 3. A real crossing and a virtual crossing.

Remark 3.2. By the above theorem if we classify the homotopy classes of nanophrases, then we
obtain the classification of ordered, pointed multi-component curves under the stable equivalence
as a corollary.

Example 3.1. Consider a two-component pointed ordered curve shown in Fig. 2. Assume that
a left circle is first component of this curve and a right circle is second component of this curve.
Then a nanophrase which corresponds to this curve is ({A,B}, (AB|AB)) with |A| is equal to b
and |B| is equal to a.

Moreover let Lk be the set of stable equivalence classes of k-component pointed ordered oriented
link diagrams (definition of the stable equivalence of link diagrams is given in [19] for example).
Then Turaev proved following theorem.

Theorem 3.2 (Turaev [19]). There is a canonical bijection between Lk and Pk(α∗, S∗) where
α∗ is equal to {a+, a−, b+, b−} with an involution τ∗(a±) is equal to b∓ and S∗ is equal to
{(a±, a±, a±), (a±, a±,a∓), (a∓,a±,a±), (b±, b±, b±), (b±, b±, b∓), (b∓, b±, b±)}.

The method of making nanophrase P (L) from ordered, pointed k-component link L is similar
to the case Theorem 3.1. See [19] for more details.

Remark 3.3. We can find another applications of the theory of nanowords and étale words to
geometry and topology in papers [11] and [12]. N. Ito used the theory of nanowords to study
planar curves and wave fronts on R2.

3.3. Presentation of curves on surfaces by virtual strings. In this subsection, we in-
troduce useful method to illustrate curves on surfaces. To do so, we introduce virtual string
diagrams and virtual strings.

A virtual string diagram is a planar graph of valency four endowed with the following structure:
each vertex either is an unmarked crossing (in other words, real crossing) or is marked by a virtual
crossing (see Figure 3). Then we define a virtual string by a virtual string diagram modulo flat
virtual Reidemeister moves which are illustrated in Figure 4. We also use terminologies pointed,
ordered and oriented same as in the case of curves on surfaces.

It is known the stable equivalence theory of pointed ordered curves on surfaces is equivalent
to the theory of pointed ordered virtual strings by the correspondence illustrated in Figure 5
(see [13], [19] for example). Therefore in the rest of this paper, we illustrate curves on surfaces
as virtual strings diagrams.
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Figure 4. Flat virtual Reidemeister moves.

Figure 5. The correspondence of virtual strings and curves on surfaces.

4. Classification of Nanophrases and Étale Phrases up to Homotopy.

In this section, we introduce classification theorems of nanowords, nanophrases, étale words
and étale phrases up to homotopy which were proved in [1], [3], [4] and [18].

4.1. Classification of nanowords and étale words. First, we introduce classification of
nanowords with at most six letters (see [18]). Note that an arbitrary nanoword of length two is
homotopic to an empty nanoword ∅ by a first homotopy move.

Theorem 4.1 (Turaev [18]). Let w be a nanoword of length four over α. Then w is either
homotopic to the empty nanoword or isomorphic to the nanoword wa,b := (A = {A,B}, ABAB)
where |A| = a, |B| = b ∈ α with a 6= τ(b). Moreover for a 6= τ(b), the nanoword wa,b is
non-contractible and two nanowords wa,b and wa′,b′ are homotopic if and only if a = a′ and
b = b′.

Next we introduce homotopy classification of nanowords with length less than or equal to
six. Pick three letters a, b, c ∈ α (possibly coinciding). Let A be an α-alphabet consisting
of three letters A, B and C where |A| is a, |B| is b and |C| is c. Consider nanowords over
α, w1

a,b,c = ABCABC, w2
a,b,c = ABCACB, w3

a,b,c = ABCBAC, w4
a,b,c = ABCBCA, and

w5
a,b,c = ABACBC. It is easily checked that a nanoword of length six is either homotopic to a

nanoword with length less than or equal to four or isomorphic to wi
a,b,c for some i ∈ {1, 2, 3, 4, 5}.

We now point out obvious sufficient conditions for wi
a,b,c to be isomorphic to the empty word.

If a = τ(b) or c = τ(b), then w1
a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 1-regular

if a 6= τ(b) 6= c.
If c = τ(b), then w2

a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 2-regular if c 6= τ(b).
If a = τ(b), then w3

a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 3-regular if a 6= τ(b).
If c = τ(b), then w4

a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 4-regular if c 6= τ(b).
(This coincides with the 2-regularity).
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If a = b = c = τ(a), then w5
a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is singular if

a = b = c = τ(a) and 5-regular otherwise.
The following theorem gives the homotopy classification of nanowords of length six.

Theorem 4.2 (Turaev [18]). For i ∈ {1, 2, 3, 4, 5} and any i-regular triple a, b, c ∈ α, the
nanoword wi

a,b,c is neither contractible nor homotopic to a nanoword of length 4. The nanowords
wi corresponding to i-regular triples a, b, c and a′, b′, c′ are homotopic if and only if (a, b, c) is equal
to (a′, b′, c′). For i 6= j, the nanowords wi corresponding to i-regular triples are not homotopic to
nanowords wj corresponding to j-regular triples with one exception: w4

a,b,c is homotopic to w5
a,b,c

for a = b = c 6= τ(a).

Turaev constructed some homotopy invariants of nanowords, and proved the above classifica-
tion theorems in [18].

Moreover, Turaev classified words with at most five letters.

Theorem 4.3 (Turaev [18]). A multiplicity-one-free word of length less than or equal to four
in the alphabet α has one of the following forms: aa, aaa, aaaa, aabb, abba, abab with distinct
a, b ∈ α The words aa, aabb, abba are contractible. The words aaa and aaaa are contractible if
and only if τ(a) is equal to a. The word abab is contractible if and only if τ(a) is equal to b.
Non-contractible words of type aaa, aaaa and abab are homotopic if and only if they are equal.

4.2. Classification of nanophrases and étale phrases. Next we introduce classification
theorems of nanophrases and étale phrases which were proved by the author in [1], [3] and [4].

First, we introduce the homotopy classification of nanophrases with at most four letters

without condition on length. Set P 1,1;p,q
a := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

Ǎ |∅| · · · |∅) with |A| = a
for 1 ≤ p < q ≤ k. Classification of nanophrases with at most two letters is described as follows.

Theorem 4.4 ([3]). Let P be a nanophrase of length k with 2 letters. Then P is either homotopic
to (∅| · · · |∅) or isomorphic to P 1,1;p,q

a for some p, q ∈ {1, · · · k}, a ∈ α. Moreover P 1,1;p,q
a and

P 1,1;p′,q′

a′ are homotopic if and only if p is equal to p′, q is equal to q′ and a is equal to a′.

To describe the classification theorem of nanophrases with four letters without condition on
length, we use following notations.

P 4;p
a,b := (∅| · · · |∅|

p

ˇABAB |∅| · · · |∅),

P 3,1;p,q
a,b := (∅| · · · |∅|

p

ˇABA |∅| · · · |∅|
q

B̌ |∅| · · · |∅),

P 2,2I;p,q
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

ǍB |∅| · · · |∅),

P 2,2II;p,q
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

B̌A |∅| · · · |∅),

P 1,3;p,q
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

ˇBAB |∅| · · · |∅),

P 2,1,1I;p,q,r
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 2,1,1II;p,q,r
a,b := (∅| · · · |∅|

p

B̌A |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,2,1I;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

ǍB |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,2,1II;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌A |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,1,2I;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

ǍB |∅| · · · |∅),
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P 1,1,2II;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

B̌A |∅| · · · |∅),

P 1,1,1,1I;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅|
s

B̌ |∅| · · · |∅),

P 1,1,1,1II;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

Ǎ |∅| · · · |∅|
s

B̌ |∅| · · · |∅),

P 1,1,1,1III;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

B̌ |∅| · · · |∅|
s

Ǎ |∅| · · · |∅),
with |A| is equal to a and |B| is equal to b. If a is equal to τ(b), then nanophrases P 4;p

a,b , P
2,2I;p,q
a,b

and P 2,2II;p,q
a,b are homotopic to (∅| · · · |∅). So when we write P 4;p

a,b , P
2,2I;p,q
a,b and P 2,2II;p,q

a,b we
always assume that a is not equal to τ(b).

Under the above notations the classification of nanophrases with four letter is described as
follows.

Theorem 4.5 ([3]). Let P be a nanophrase of length k with four letters. Then P is either
homotopic to nanophrase with less than or equal to two letters or isomorphic to PX;Y

a,b for some
X ∈ {4, (3, 1), · · · , (1, 1, 1, 1III)}, Y ∈ {1, · · · , k, (1, 2), · · · , (k − 3, k − 2, k − 1, k)}. Moreover
PX;Y
a,b and PX′;Y ′

a′,b′ are homotopic if and only if X = X ′, Y = Y ′, a = a′ and b = b′.

Finally we introduce the classification of étale phrases with at most four letters which are
called monoliteral type.

An étale phrases P is called monoliteral if P has only empty word as its components or
consists of a single letter. For example, étale phrases (AAA|AAAA|∅|AA), (AA|A) and (∅|∅|∅)

are monoliteral phrases. Now we consider the following étale phrases: P 1,1;l1,l2
a := (∅| · · · |∅|

l1
ǎ

|∅| · · · |∅|
l2
ǎ |∅| · · · |∅),

P 3;l
a := (∅| · · · |∅|

l

ǎ3 |∅| · · · |∅),

P 2,1;l1,l2
a := (∅| · · · |∅|

l1

ǎ2 |∅| · · · |∅|
l2
ǎ |∅| · · · |∅),

P 1,2;l1,l2
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |∅|

l2

ǎ2 |∅| · · · |∅),

P 1,1,1;l1,l2,l3
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |

l2
ǎ |∅| · · · |∅|

l3
ǎ |∅| · · · |∅),

P 4;l
a := (∅| · · · |∅|

l

ǎ4 |∅| · · · |∅),

P 3,1;l1,l2
a := (∅| · · · |∅|

l1

ǎ3 |∅| · · · |∅|
l2
ǎ |∅| · · · |∅),

P 2,2;l1,l2
a := (∅| · · · |∅|

l1

ǎ2 |∅| · · · |∅|
l2

ǎ2 |∅| · · · |∅),

P 1,3;l1,l2
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |∅|

l2

ǎ3 |∅| · · · |∅),

P 2,1,1;l1,l2,l3
a := (∅| · · · |∅|

l1

ǎ2 |∅| · · · |
l2
ǎ |∅| · · · |∅|

l3
ǎ |∅| · · · |∅),

P 1,2,1;l1,l2,l3
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |

l2

ǎ2 |∅| · · · |∅|
l3
ǎ |∅| · · · |∅),

P 1,1,2;l1,l2,l3
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |

l2
ǎ |∅| · · · |∅|

l3

ǎ2 |∅| · · · |∅),

P 1,1,1,1;l1,l2,l3,l4
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |∅|

l2
ǎ |∅| · · · |∅|

l3
ǎ |∅| · · · |∅|

l4
ǎ |∅| · · · |∅),

where a ∈ α and l, l1,l2,l3,l4 ∈ k̂ with l1 < l2 < l3 < l4.
Note that if a is equal to τ(a), then P 4;l

a and P 3;l
a are homotopic to the empty phrase. So

when we write P 4;l
a or P 3;l

a we always assume that a is not equal to τ(a). Now we describe the
classification theorem of monoliteral étale phrases with less than or equal to four letters.
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Theorem 4.6 ([4]). Let P be a multiplicity-one-free monoliteral étale phrase over α with less
than or equal to four letters. Then P is either homotopic to (∅)k or isomorphic to one of the fol-
lowing étale phrases: P 1,1;l1,l2

a , P 4;l
a , P 3,1;l1,l2

a , P 1,3;l1,l2
a , P 2,1,1;l1,l2,l3

a , P 1,2,1;l1,l2,l3
a , P 1,1,3;l1,l2,l3

a ,
P 1,1,1,1;l1,l2,l3,l4
a , P 3;l

a , P 2,1;l1,l2
a , P 1,2;l1,l2

a and P 1,1,1;l1,l2,l3
a for some l1, l2, l3, l4 ∈ k̂ and a ∈ α.

Moreover they are homotopic if and only if they are equal with one exception : P 3,1;l1,l2
a and

P 1,3;l1,l2
a are homotopic to P 1,1;l1,l2

a if a is equal to τ(a).

Remark 4.1. A finite sequence of homotopy moves from P 3,1;l1,l2
a to P 1,1;l1,l2

a is realized as follows:

(P 3,1;l1,l2
a )d = (∅| · · · |∅|A12A13A14A12A23A24A13A23A34|∅| · · · |∅|A14A24A34|∅| · · · |∅)

' (∅| · · · |∅|A13A12A14A23A12A24A23A13A34|∅| · · · |∅|A14A24A34|∅| · · · |∅)
' (∅| · · · |∅|A13A12A23A14A12A23A24A13A34|∅| · · · |∅|A24A14A34|∅| · · · |∅)
' (∅| · · · |∅|A13A14A24A13A34|∅| · · · |∅|A24A14A34|∅| · · · |∅)
' (∅| · · · |∅|A13A13A34|∅| · · · |∅|A34|∅| · · · |∅)
' (∅| · · · |∅|A34|∅| · · · |∅|A34|∅| · · · |∅)
= (P 1,1;l1,l2

a )d.

Similarly a finite sequence of homotopy moves from P 1,3;l1,l2
a to P 1,1;l1,l2

a is realized as follows:

(P 1,3;l1,l2
a )d = (∅| · · · |∅|A12A13A14|∅| · · · |∅|A12A23A24A13A23A34A14A24A34|∅| · · · |∅)

' (∅| · · · |∅|A12A13A14|∅| · · · |∅|A12A24A23A13A34A23A14A34A24|∅| · · · |∅)
' (∅| · · · |∅|A12A14A13|∅| · · · |∅|A12A24A23A34A13A23A34A14A24|∅| · · · |∅)
' (∅| · · · |∅|A12A14A13|∅| · · · |∅|A12A24A13A14A24|∅| · · · |∅)
' (∅| · · · |∅|A12|∅| · · · |∅|A12A24A24|∅| · · · |∅)
' (∅| · · · |∅|A12|∅| · · · |∅|A12|∅| · · · |∅)
= (P 1,1;l1,l2

a )d.

Proof of classification theorems of nanophrases and monoliteral phrases are described in [1],
[3] and [4]. In the next section we introduce some invariants and show examples of classifications.

5. Homotopy Invariants of Nanophrases.

In this section we introduce some homotopy invariants for nanophrases which we used to
prove the classification theorems.

5.1. Component length vector. In this sub-subsection, we define the component length vector
of nanophrases (see [1], [3] and [8]).

Let P = (w1|w2| · · · |wk) be a nanophrase over α. For l ∈ k̂, we define w(l) ∈ Z/2Z by the
length of wl. We call the vector

w(P ) := (w(1), · · · , w(k)) ∈ (Z/2Z)k

the component length vector.

Proposition 5.1 ([3]). The component length vector is a homotopy invariant of nanophrases.

Remark 5.1. Note that the component length vector is a S-homotopy invariant of nanophrases
for all S.

Example 5.1. Consider nanophrases (A|A) and (∅|∅). Then w((A|A)) is equal to (1, 1). On
the other hand, w((∅|∅)) is equal to (0, 0). Therefore (A|A) and (∅|∅) are not homotopic each
other.
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5.2. Linking vector. In this sub-section we introduce the linking vector of nanophrases (See
[3] and [8]). Let π be the group which is defined as follows:

π := (a ∈ α|aτ(a) = 1, ab = ba for all a, b ∈ α ).

Let P be a nanophrases (w1|w2| · · · |wk) of length k over α. We define lP (i, j) ∈ π for i < j by

lP (i, j) :=
∏

A∈Im(wi)∩Im(wj)

|A|.

We call a vector lk(P ) := (lP (1, 2), lP (1, 3), · · · , lP (1, k), lP (2, 3), · · · , lP (k − 1, k)) ∈ π
1
2k(k−1)

the linking vector of P .

Proposition 5.2 ([3]). The linking vector of nanophrases is a homotopy invariant of nanophrases.

Remark 5.2. This invariant is also S-homotopy invariant for all S.

Example 5.2. Consider nanophrases (A|A) and (B|B) over α where |A| is equal to a and |B|
is equal to b. Then lk((A|A)) is equal to a ∈ π and lk((B|B)) is equal to b ∈ π. Therefore (A|A)
and (B|B) are homotopic if and only if a is equal to b.

6. Gibson’s So invariant.

In the paper [8], A.Gibson defined a homotopy invariant of nanophrases over the one-element
set. First we define some notations. Let (A, P = (w1| · · · |wk)) be a nanophrase over the one-
element set. For a letter A ∈ Ai := {A ∈ A|Card(w−1i (A)) = 2}, we define lj(A) ∈ Z/2Z as
follows : When we write P as xAyAz where x, y and z are words in A possibly including "|"
character, lj(A) is modulo 2 of the number of letters which appear exactly once in y and once
in the j-th component of the phrase P . Then we define l(A) ∈ (Z/2Z)k by

l(A) := (l1(A), l2(A), · · · , lk(A)).

Let v be a vector in (Z/2Z)k. Then we define dj(v) ∈ Z by

dj(v) := Card({A ∈ Aj |l(A) = v}),

and we define Bj(P ) ∈ 2(Z/2Z)
k

by

Bj(P ) := {v ∈ (Z/2Z)k \ {0}|dj(v) = 1 mod 2}.

Then we define the So(P ) ∈ (2(Z/2Z)
k

)k by

So(P ) := (B1(P ), B2(P ), · · · , Bk(P )).

Theorem 6.1 (Gibson [8]). So is a homotopy invariant of nanophrases over the one-element
set.

Example 6.1. Consider nanophrases (P 2,1;l1,l2)d and (P 2,1;l1,l2)d. Then

So((P 2,1;l1,l2
a )d) = (∅, · · · , ∅,

l1
ˇ{el2}, ∅, · · · , ∅),

and

So((P 2,1;m1,m2
a )d) = (∅, · · · , ∅,

m1

ˇ{em2
}, ∅, · · · , ∅),

where ei is equal to (0, · · · , 0,
i

1̌, 0, · · · , 0). Therefore we obtain that P 2,1;l1,l2
a is not homotopic

to P 2,1;m1,m2
a if (l1, l2) is not equal to (m1,m2).

Remark 6.1. The author and A.Gibson generalized the So invariant for nanophrases over the
one element set to a homotopy invariant over an arbitrary α in papers [5] and [10] independently.
These two generalizations are equivalent. See [5] and [10] for more details.
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6.1. Invariant Ro for nanophrases over the one-element set. In this subsection, we intro-
duce an invariant of nanophrases over the one-element set which was defined in [4]. Let (A, P )
be a nanophrase over the one-element set. For two letters X ∈ Al1 and Y ∈ Al2 , we define
dlP (X,Y ) ∈ Z/2Z by

dlP (X,Y ) = Card{Z ∈ Al1l2 |n(X,Z) = 1, n(Y,Z) = −1} mod 2,

and for integers l1 and l2, we define deP (l1, l2) ∈ Z/2Z by

deP (l1, l2) = Card{(X,Y ) ∈ Al1 ×Al2 |dl(X,Y ) = 1} mod 2.

Then we define Ro(P ) by
Ro(P ) = (de(l1, l2))l1<l2 .

Proposition 6.1 ([4]). The Ro is a homotopy invariant for nanophrases over the one-element
set.

Example 6.2. Consider the étale phrase P 2,2;l1,l2
a . Then

(P 2,2;l1,l2
a )d = (∅| · · · |∅|A12A13A14A12A23A24|∅| · · · |∅|A13A23A34A14A24A34|∅| · · · |∅).

We denote (P 2,2;l1,l2
a )d by P . In this caseãĂĂ

dlP (A12, A34) = Card{A14} = 1

and

deP (i, j) =

{
1 if (i, j) = (l1, l2),

0 otherwise.

Therefore Ro(P ) is equal to e(l1,l2). On the other hand Ro((∅| · · · |∅)) is equal to 0. Therefore,
this example shows that P 2,2;l1,l2

a is not homotopic to the empty phrase.

Using the above invariants and some properties on nanophrases and étale phrases, we can
classify nanophrases and monoliteral phrases at most four letters without condition on length.

7. An Application to Curves on Surfaces.

By the theorems in Section 3, if we put α that is equal to α0 and τ is equal to τo, then we
obtain the classification of pointed ordered curves on surfaces up to stable equivalence.

7.1. Applications of the classification of nanophrases. In the papers [1], [2] and [4], the
author proved the following corollaries.

Corollary 7.1 ([1]). There are exactly 19 stable equivalence classes of two-component pointed,
ordered, oriented, curves on surfaces with minimum crossing number less than or equal to 2.

More generally we can prove a following statement.

Corollary 7.2 ([2]). Let k be an positive integer. Then there are exactly

1 +
1

2
k2 + k3 +

1

2
k4

stable equivalence classes of ordered, pointed, k-component surface curves with minimal crossing
number less than or equal to two.

An ordered, pointed multi-component surface-curve is called irreducible if it is not stably
equivalent to a surface-curve with a simply closed component.
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Figure 6. The list of irreducible curves. See also Remark 7.1.

Corollary 7.3 ([3]). Any irreducible ordered, pointed multi-component surface-curve with min-
imal crossing number less than or equal to two is stably equivalent to one of the ordered, pointed
multi-component curves arising from the following list (see also Remark 7.1). There are exactly
52 stable equivalence classes of irreducible ordered, pointed, multi-component surface-curves.

Remark 7.1. We would like to list up the all stable equivalence classes of irreducible ordered,
pointed multi-component surface-curves with minimal crossing number less than or equal to
two. However there are too many curves to list up. Therefore we make just the list of multi-
component curves without order and orientation of the components in Figure 6. If we choose
order and orientation of components, then we obtain a ordered, pointed multi-component curve
on surface. Two different pictures from Figure 6 never produce equivalent ordered, pointed multi-
component curves on surfaces. On the other hand it is possible that two different additional
structures (orientation and the order) on the same picture yield equivalent ordered, pointed
multi-component curves on surfaces. More precisely, 2 (respectively 2, 8, 4, 24, 12) different
ordered, pointed multi-component surface-curves arise from the upper left (respectively upper
middle, upper right, lower left, lower middle, lower right) picture. By Theorem 4.5, ordered,
pointed multi-component surface-curves arising from pictures in Figure 6 are stably equivalent
if and only if nanophrases associated to these curves are homotopic, and we can obtain all of
the stable equivalent classes of irreducible ordered, pointed multi-component curves on surfaces
with minimal crossing number less than or equal to two by specifying order and orientation for
multi-component curves in Figure 6.

7.2. An application of the classification of monoliteral phrases. In this sub-section we
introduce an application of the classification of monoliteral phrases with at most four letters.
To do so, we introduce a notion of monoliteral type curves. A curve on a surface is called of
monoliteral type if the curve is stably equivalent to a curve which corresponds to a nanophrase
obtained by desingularization of a monoliteral phrase. Now we describe the classification of irre-
ducible monoliteral ordered pointed multi-component curves on surfaces with minimal crossing
number less than or equal to six.

Corollary 7.4. Any irreducible monoliteral ordered pointed multi-component curve on a surface
with minimal crossing number less than or equal to six is stably equivalent to one of the or-
dered, pointed multi-component curves in Figures 7 and 8. Therefore there are exactly 26 stable
equivalence classes of irreducible ordered, pointed, multi-component surface-curves.

Remark 7.2. Curves in Figure 7 correspond to monoliteral phrases of type PX;Y
a and curves in

Figure 8 correspond to monoliteral phrases of type PX;Y
b .
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Figure 7. The half of list of monoliteral curves. Each component is numerated
from right to left.
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Figure 8. The half of list of monoliteral curves. Each component is numerated
from left to right.



52 TOMONORI FUKUNAGA

Figure 9. A flat virtualization move

Proof. We put that α is equal to α0, and τ is equal to τ0, then by Theorem 4.6 we obtain the
list of a complete representable system of homotopy class of nanophrases which does not contain
empty words as components of phrase as follows: (aaaa), (aaa|a), (aa|aa), (a|aaa), (aa|a|a),
(a|aa|a), (a|a|aa), (a|a|a|a), (aaa), (aa|a), (a|aa), (a|a|a), (a|a), (bbbb), (bbb|b), (bb|bb), (b|bbb),
(bb|b|b), (b|bb|b), (b|b|bb), (b|b|b|b), (bbb), (bb|b), (b|bb), (b|b|b) and (b|b). Note that in this case
τ0(a) is not equal to a and τ0(b) is not equal to b, therefore (ccc|c), (c|ccc) and (c|c) are not
homotopic each other for each c ∈{a, b}. Therefore by Theorem 3.1 there are exactly 26 stable
equivalence classes of pointed ordered irreducible curves on surfaces of monoliteral type with at
most six crossings.

Moreover by the correspondence of curves and phrases, we obtain the list of curves on surfaces
in Figures 7 and 8. �

Remark 7.3. In the paper [8], A. Gibson classified un-pointed oriented flat virtual virtual knots
with at most four crossings using the theory of nanowords. See [8] for more details.

8. An application to free links.

In this subsection, we give the classification of ordered pointed free links with some conditions
using the classification of nanophrases and monoliteral phrases.

The theory of free knots and links was introduced by V . O. Manturov in [15] and [16]. A free
link is an equivalence class of flat virtual link diagrams modulo flat virtual Reidemeister moves
and flat virtualization move which is illustrated in Figure 9. We can define ordered, pointed,
irreducible and monoliteral for free links similarly as in the case for flat virtual links.

It is known that there is a canonical bijection between the set of ordered pointed k-component
free links and the set of homotopy classes of nanophrases over the one element set {a} with the
involution a 7→ a. See [9] and [15] for example.

Now we apply the classification of nanophrases and monoliteral phrases to the classification
of ordered pointed irreducible free links.

Corollary 8.1. There are exactly 12 irreducible ordered pointed free links with at most two real
crossings.

Proof. We put α is equal to {a}, and τ is equal to the identity map on {a}, then by the Theorem
4.5 we obtain the list of a complete representable system of homotopy classes of nanophrases
which does not contain empty words as components of phrase as follows: (ABA|B), (A|BAB),
(AB|A|B), (BA|A|B), (A|AB|B), (A|BA|B), (A|B|AB), (A|B|BA), (A|B|A|B), (A|B|B|A),
(A|A|B|B) and (A|A) where |A| and |B| are equal to a. Therefore there are 12 irreducible
ordered pointed free links with at most two real crossings. �

Corollary 8.2. There are exactly nine irreducible ordered pointed free links of monoliteral type
with at most six real crossings.



CLASSIFICATION OF CURVES ON SURFACES AND FREE LINKS 53

Proof. We put α is equal to {a}, and τ is equal to the identity map on {a}, then by Theorem 4.6
we obtain the list of a complete representable system of homotopy classes of nanophrases which
does not contain empty words as components of phrase as follows: (aa|aa), (aa|a|a), (a|aa|a),
(a|a|aa), (a|a|a|a), (aa|a), (a|aa), (a|a|a) and (a|a). Therefore there are nine irreducible ordered
pointed free links of monoliteral type with at most six real crossings. �

Remark 8.1. We can construct the table of irreducible ordered pointed free links of monoliteral
type with at most six crossings similarly as in the case of curves on surfaces. It is similar to the
Figure 7. If we delete curves which correspond to (aaaa), (aaa|a), (a|aaa) and (aaa), then we
obtain the required table. Therefore we avoid drawing the table.

Remark 8.2. From Corollary 8.1, there are no pointed free knots with at most two crossings.
Examples of non trivial (pointed) free knots were found by V. O. Manturov and A. Gibson
independently. See [15] and [9] for more details. On the other hand, by Corollary 8.2, there
are no pointed free knots with at most six crossings. More generally, in the paper [18] Turaev
proved there is no pointed free knot of monoliteral type in terms of the theory of nanowords.
See [18] for more details.
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