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ON BI-LIPSCHITZ STABILITY OF FAMILIES OF FUNCTIONS

GUILLAUME VALETTE

Abstract. We focus on the Lipschitz stability of families of functions. We introduce a sta-
bility notion, called fiberwise bi-Lipschitz equivalence, which preserves the metric structure
of the level surfaces of functions and show that it does not admit continuous moduli in the
framework of semialgebraic geometry. We trivialize semialgebraic families of Lipschitz func-
tions by constructing triangulations of their generic fibers which contain information about
the metric structure of the sets.

0. Introduction

We study the metric stability of semialgebraic families of functions. In [S1], M. Shiota showed
that a semialgebraic family of continuous functions ft : Rn → R, t ∈ Rp, is generically topo-
logically trivial. It means that we can find a partition of Rp and two semialgebraic families of
homeomorphisms φt and ht such that φ−1t ◦ ft ◦ht is constant with respect to t on every element
of this partition (see also [C, S2]). The fibers ft are then said topologically equivalent. The main
result of this paper is a partial Lipschitz counterpart of this theorem (Theorem 6.4).

The study of metric stability of analytic sets was initiated by T. Mostowski in his fundamental
paper [M]. It was then developed, mainly by A. Parusiński [P1, P2], L. Birbrair [B], and the
author of the present paper [V1, V2, V3]. The description of the metric structure of singular-
ities provides a more accurate information than the description of their topology, valuable for
applications [V5, V4]. The Lipschitz category can be considered as an intermediate category
in between the C1 category, too restricted to investigate singularities (C1 equivalence admits
continuous moduli), and the C0 category, which often provides too vague information on the
singularity.

The notion of semialgebraic bi-Lipschitz triviality of functions (Definition 6.1) is defined in
the same way as the notion of topological triviality above, except that φt and ht are required to
be bi-Lipschitz. If many results about the topology have their counterpart in the framework of
Lipschitz geometry [M, P1, P2, V1], it is however known that bi-Lipschitz equivalence of functions
admits continuous moduli, in the sense that semialgebraic families of functions are not always
generically bi-Lipschitz trivial. A counterexample was found by J.-P. Henry and A. Parusiński
[H-P] (example 6.3 below). It was however shown in [RV] that bi-Lipschitz K-equivalence does
not admit continuous moduli.

We show in this paper that a slightly weaker equivalence notion than bi-Lipschitz equivalence
does not admit continuous moduli for semialgebraic families of Lipschitz functions. This notion
is stronger than C0 equivalence since it preserves the metric structure of the level surfaces of
the functions. Studying the stability of families of functions amounts to investigate triviality
of foliations since the levels of the functions provide a singular foliation. In our equivalence
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relation, called fiberwise bi-Lipschitz triviality (see Definition 6.1), the homeomorphism is bi-
Lipschitz on every level surface of the function, with the same Lipschitz constant. The Lipschitz
condition may only fail for two points of two different fibers. The trivialization has however to
vary continuously when we pass from one level of the function to one another.

Topological triviality of families of functions is proved in [BCR, C] by triangulating the generic
fibers of semialgebraic families of functions. Triangulating and trivializing are thus two very
related problems. In [V1], the author introduces the notion of Lipschitz triangulation. These are
triangulations which provide information not only on the topology of the considered object but
also on its metric structure. The metric type of a singularity is thus enclosed in finitely many
combinatoric data in the sense that two singularities having the same Lipschitz triangulation
are bi-Lipschitz homeomorphic. This is very convenient to describe the metric properties of
semialgebraic sets or to prove finiteness properties regarding the metric structure of semialgebraic
singularities [V2, V3]. Henry and Parusiński’s example nevertheless shows that it is impossible
to construct a triangulation of a semialgebraic function which would be a Lipschitz triangulation
in sense of [V1] (since this would entail that bi-Lipschitz triviality of families of functions holds
for generic parameters).

We prove generic fiberwise bi-Lipschitz triviality (Theorem 6.4) by showing that we can tri-
angulate the generic fiber of a semialgebraic family of Lipschitz functions (Theorem 2.4). The
triangulation that we construct satisfies a condition similar to the one required in the definition
of the Lipschitz triangulations introduced in [V1], but just on points lying in the same fiber.

Our triviality theorem is thus, as in [C], derived from a triangulation theorem. Doing so, we
have to work in an arbitrary real closed field (rather than in R), since the generic fiber of the
considered family lies in an extension of R. We wish to emphasize here that even the study of
semialgebraic functions of Rp×Rn requires, if one wants to use this kind of technique, to deal with
an arbitrary real closed field. This kind of technique is classical and, although not completely
elementary, has the significant advantage to get rid of the parameters during the best part of the
proof. It is also worthy of notice that in this way we get two theorems (one showing triangulability
and a second establishing triviality), both of their own interest. Noteworthy, these two theorems
provide semialgebraic homeomorphisms. Semialgebraic mappings have nice properties. For
instance, M. Shiota and Yoccoi established in [SY] a version of the Hauptvermutung for these
mappings (see also [S2]). Semialgebraic bi-Lipschitz mappings have also nice differentiability
properties used by the author of the present paper in [V4, V5] so as to study differential forms.
Content of the paper. In the first section we recall the known results on C0 stability. This is
useful so as to emphasize the close interplay between triangulations and trivializations. Indeed,
the proof of the main theorem (Theorem 6.4) will make use of the same argument as the one used
in the proof of Theorem 1.6. In section 2, we recall the notion of Lipschitz triangulation and state
our triangulation theorem for functions (Theorem 2.4). The next sections are devoted to the
proof of this theorem. Section 3 recalls some required results of [V1] and proves a parameterized
version of the main tool used there, constructing “families of regular systems of hypersurfaces”
for one parameter families of semialgebraic sets. Section 5 proves Theorem 2.4. The last section
introduces the notion of fiberwise bi-Lipschitz triviality and yields it for semialgebraic families
of Lipschitz functions, for generic parameters.

Notations 0.1. We write Q+ for the positive rational numbers. Let R be a real closed field.
Given A ⊂ Rn we denote by int(A) the interior of A, cl(A) the closure of A, and by δ(A) the
topological boundary of A, cl(A) \ int(A). We shall write |.| for the Euclidean norm and B(λ, r)
for the ball of radius r centered at λ (for all the considered metric spaces Rn, Sn, . . . ).

We denote by e1, . . . , en the canonical basis ofRn and byGkn the Grassmanian of k-dimensional
vector spaces of Rn. We set Gn := ∪n−1k=1Gkn. We denote by τ(A) the closure in the Grassmanian
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of the set of all the tangent spaces to Areg, where Areg stands for the set constituted by the
points near which the set A is a C1 manifold (of dimension dimA or smaller).

We shall denote by d(·, ·) the Euclidean distance in Rn. Given x ∈ Rn and P ⊂ Rn, we write
d(x, P ) for the distance to the subset P (defined by infy∈P d(x, y)). Given a subset C of Gn we
also set d(x,C) := infP∈C d(x, P ).

A Lipschitz function is a function f : A→ R satisfying for some L ∈ R and all x and x′ in
A

|f(x)− f(x′)| ≤ L|x− x′|.
The function may be said L-Lipschitz is one wants to specify the constant. It is said Q-
Lipschitz if it is L-Lipschitz with L ∈ Q.

Given a couple of functions ξ1 and ξ2 on A, we write ξ1 ∼K ξ2 if there exist C in K such that
ξ1 ≤ Cξ2 and ξ2 ≤ Cξ1 (here K ⊂ R). We denote by [ξ1, ξ2] the set {(x, y) ∈ A × R : ξ1(x) ≤
y ≤ ξ2(x)}.

1. Topological stability

1.1. Triangulations of functions. Let R be a real closed field.
Simplicial complexes will be finite and may have open simplices (and hence will not always

be compact). An open simplex is a simplex from which the proper faces have been taken off.
We will denote by R̃n the real spectrum of the polynomial ring R[X1, . . . , Xn] (see [BCR, C]).

Given α ∈ R̃n we shall write k(α) for the corresponding extension of R.

Definition 1.1. Let X be a semialgebraic set. A triangulation of X is the data of a finite
simplicial complex K, and a semialgebraic homeomorphism h : |K| → X.

Let f : X → R be a semialgebraic function. A triangulation of f is the data of a trian-
gulation h of X together with a homeomorphism ϕ : R → R such that ϕ−1 ◦ f ◦ h is piecewise
linear.

Theorem 1.2. [S1] Every continuous bounded semialgebraic function admits a C0-triangulation.
The vertices of the simplicial complex may be assumed to have coordinates in Q.

Remark 1.3. If we do not require that the vertices lie in Qn then the map ϕ (see definition
1.1) may be required to be the identity.

1.2. Topological triviality of semialgebraic families of functions.

Definition 1.4. A semialgebraic family of sets of Rp×Rn is a semialgebraic subset of Rp×Rn,
the first p variables being considered as parameters. Let X be a semialgebraic family of sets of
Rp ×Rn. A semialgebraic family of functions is a semialgebraic mapping f : X → Rp ×R,
of type X 3 (t, x) 7→ (t, ft(x)), the first p variables being considered as parameters.

For a parameter t in Rp, we call the function ft the fiber at t of this family. Given α ∈ R̃p,
we denote by fα the generic fiber at α (see [BCR, C]).

Given a semialgebraic family of functions, it is a natural problem to compare the fibers ft
with each other.

Definition 1.5. We say that a semialgebraic family f : X → Rp × R is semialgebraically
C0 trivial along W ⊂ Rp if there exist two semialgebraic families of homeomorphisms h :
W ×Rn →W ×Rn and φ : W ×R→W ×R such that for any t ∈W :

ht(Xt0) = Xt, φt ◦ ft ◦ ht = ft0 , t0 ∈W.

The fibers ft are then said to be semialgebraically C0 equivalent.
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Semialgebraic families of functions are generically semialgebraically topologically trivial:

Theorem 1.6. (Shiota) Let f : X → Rp×R be a semialgebraic family of continuous functions.
There exist a semialgebraic partition V1, . . . , Vm of Rp such that for every i, f is semialgebraically
topologically trivial along Vi.

Proof. We first check that we can assume, without loss of generality, that ft is bounded on X.
Indeed, the function u(y) := y

1+|y| is a homeomorphism from R onto (−1; 1). If we prove the

result for f̂ := u ◦ f , we are done. Let us assume that ft is bounded for any t without changing
notations.

Let α ∈ R̃p. By Theorem 2.3, there exist semialgebraic homeomorphisms h : |K| → Xα and
ϕ : k(α) → k(α), with K finite simplicial complex, such that ϕ−1 ◦ fα ◦ h is a piecewise linear
function on every simplex. The simplicial complex K may be assumed to have vertices in Qn.
As a matter of fact, |K| is indeed the generic fiber of a constant family U ×|K|, with U ∈ α (see
[BCR, C] for more details).

The homeomorphisms h and ϕ respectively give rise to families of semialgebraic homeomor-
phisms:

θ : U × |K| → U ×X,
and γ : U ×R→ U ×R.

As γ−1α ◦ fα ◦ θα is piecewise linear, γ−1t ◦ ft ◦ θt is constant with respect to t. If we set
Ht := θtθ

−1
t0 and φt(x) := γtγ

−1
t0 , we have φ−1t ◦ ft ◦Ht = ft0 . This shows that f is trivial along

U . By compactness of R̃p, we have the desired finite covering. �

2. Lipschitz triangulations

2.1. Lipschitz triangulation of semialgebraic sets. We recall in this section the results
proved in [V1]. We will adapt these techniques to families of functions.

Given a point q ∈ Rn, we write q1, . . . , qn for the coordinates of q in the canonical basis and
πi : Rn → Ri for the canonical projection.

Definition 2.1. Let σ ⊂ Rn be an open simplex. A tame system of coordinates of σ is a
homeomorphism (onto its image) (ψ1, . . . , ψn) : σ → Rn of the following form:

(2.1) ψi(q) =
qi − θi(πi−1(q))

θi(πi−1(q))− θ′i(πi−1(q))
,

(and 0 whenever θi ◦ πi−1(q) = θ′i ◦ πi−1(q)) where θi and θ′i are piecewise linear functions on
Ri−1. A standard simplicial function on σ is a function given by finitely many iterations of
sums, powers (possibly negative), and products of distances to faces.

Standard simplicial functions will sometimes be defined on σ×σ since they will be functions of
two variables q and q′, being given by finite iterations of sums, products, and powers of functions
of type q 7→ d(q, τ) and q′ 7→ d(q′, τ) with τ face of σ.

Definition 2.2. A Lipschitz triangulation of Rn is the data of a finite simplicial complex K
together with a semialgebraic homeomorphism h : |K| → Rn, such that for every σ ∈ K there
exist ϕσ,1 , . . . , ϕσ,n , standard simplicial functions over σ × σ satisfying for any q and q′ in σ:

(2.2) |h(q)− h(q′)| ∼
R

n∑
i=1

ϕσ,i(q; q
′) · |qi,σ − q′i,σ|,

where (q1,σ, . . . , qn,σ) is a tame system of coordinates of Rn. Let A1, . . . , Ak be subsets of Rn.
A Lipschitz triangulation of A1, . . . , Ak is a Lipschitz triangulation of Rn such that each
h−1(Ai) is a union of open simplices.
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With this definition two semialgebraic subsets admitting the same simplicial complex as semi-
algebraic triangulation, with ∼

R
functions ϕσ and same tame systems of coordinates are semi-

algebraically bi-Lipschitz homeomorphic. As a matter of fact, simultaneous Lipschitz triangula-
tions of the fibers of a family provide bi-Lipschitz trivializations.

Theorem 2.3. [V1] Every finite collection of semialgebraic sets admits a Lipschitz triangulation.

2.2. Lipschitz triangulations of functions. The theorem below gives a version of Theorem
2.3 for functions. Unfortunately, it is not possible to construct a triangulation of a function which
would be a Lipschitz triangulation (see example 6.3). We prove something somewhat weaker: we
show that we can triangulate every semialgebraic bounded Lipschitz function in such a way that
(2.2) holds for couples of points of the same fiber (with a constant independent of the fiber).

Theorem 2.4. Let f : X → R be a semialgebraic bounded Lipschitz function, X ⊂ Rn. There
exists a triangulation (K,φ, ψ) of f , with K ⊂ Rn+1, such that on every open simplex σ of K,
we can find standard simplicial functions ϕσ,1, . . . , ϕσ,n+1 with:

(2.3) |ψ(q)− ψ(q′)| ∼
R

n+1∑
i=1

ϕσ,i(q; q
′) · |qi,σ − q′i,σ|,

on the set
{(q, q′) ∈ σ × σ : f(ψ(q)) = f(ψ(q′))},

where (q1,σ, . . . , qn+1,σ) is a tame system of coordinates of σ. Moreover, the vertices of the
simplicial complex K lie in Qn+1 and φ is bi-Lipschitz.

Furthermore, given finitely many semialgebraic subsets A1, ..., Ak of X, we may choose the
triangulation in such a way that each Ai is a union of images of open simplices of K.

This theorem will be proved in section 5.

3. Regular lines

We recall that, given a subset C of Gn, we have set d(x,C) := infP∈C d(x, P ), where d stands
for the Euclidian distance of Rn (see Notation 0.1).

Definition 3.1. Let A be a semialgebraic set of Rn. An element λ of Sn−1 is said to be regular
for the set A if there is α ∈ Q+ such that:

d(λ; τ(A)) ≥ α.
We say that λ ∈ Sn−1 is regular for a semialgebraic family X of R × Rn if there exists

α ∈ Q+ such that for any parameter t ∈ R:
d(λ; τ(Xt)) ≥ α.

A subset C ⊂ Sn−1 is regular for a set (resp. family) X if all the elements of cl(C) are regular
for the set (resp. family) X.

Remark 3.2. Of course, if a line is regular for a family then it is regular for all the fibers of
this family. But it is indeed much stronger since, when a line is regular for a family, the angle
between this line and the tangent spaces to the fibers is bounded below away from zero by a
constant α independent of t.

Proposition 3.3. [V1] Let A be a semialgebraic subset of Rn of empty interior. There exists a
semialgebraic Q-bi-Lipschitz homeomorphism h : Rn → Rn such that h(A) has a regular vector.

We will need a parameterized version of this proposition. More precisely, we shall establish
the following proposition.
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Proposition 3.4. Let A be a semialgebraic family of R×Rn such that At has empty interior for
every t ∈ R. There exists a continuous semialgebraic family of mappings h : R×Rn → R×Rn
and C ∈ Q such that:

(1) ht C-bi-Lipschitz for any t.
(2) en is regular for the family h(A).

We will prove Proposition 3.4 by generalizing to families the techniques introduced in [V1]
for subsets of Rn.

3.1. Some preliminary lemmas. We need to recall some results which were already used in
[V1].

Lemma 3.5. [K] Given ν ∈ N, there exists a strictly positive constant σ ∈ Q+ such that for any
P1, . . . , Pν in Gn there exists P ∈ Sn−1 such that for any i we have:

d(P ;Pi) ≥ σ.

The second lemma we need was proved by the author of the present paper in [V1].

Lemma 3.6. There exists {λ1, . . . , λN} ⊂ Sn−1 such that for any semialgebraic sets A1, . . . , Am
of Rn, there exists a cell decomposition (Ci)i∈I of Rn adapted to all the Ak’s and such that for
each open cell Ci, we may find λj(i), 1 ≤ j(i) ≤ N , regular for δCi.

Given λ ∈ Sn−1, we denote by πλ the projection along the line generated by λ onto the
vector space Nλ, normal to this line. Given q ∈ Rn, we write qλ for the Euclidean inner product
< q, λ >.

The third result we shall recall is the preparation theorem, so called because it can be con-
sidered as a Weierstrass preparation theorem for semialgebraic functions.

Theorem 3.7. (Preparation Theorem) [vDS, LR, V1, P3] Let ξ : Rn+1 → R be a semialgebraic
function. Then there exists a finite semialgebraic partition (Vi)i∈I of Rn+1 such that for any Vi
there exist semialgebraic continuous functions a, θ : πen+1(Vi) → R, and r ∈ Q such that for
q = (x; qn+1) ∈ Vi:
(3.4) ξ(q) ∼Q (qn+1 − θ(x))r a(x).

Definition 3.8. The subset A ⊂ Rn is the graph for λ ∈ Sn−1 of the function ξ : E → R,
where E ⊂ Nλ, if

A = {q ∈ π−1λ (E) : qλ = ξ(πλ(q))}.
If A is the graph for λ of the function ξ : Nλ → R, we denote by

E(A, λ) := {q ∈ Rn : qλ ≤ ξ(πλ(q))}.
If A is a family of R×Rn such that At is the graph for λ of the function ξt : Nλ → R for every

t, then E(At, λ), t ∈ R, is a semialgebraic family of sets of R × Rn. Indeed, since Sn−1 ⊂ Sn,
E(A, λ) is also well defined, and is the semialgebraic family of sets whose fiber at t is E(At, λ).

When dealing with families of R × Rn, we will also write πλ for the (constant) family of
mappings πλ : R×Rn → R×Rn given by πλ,t(x) := πλ(x) for (t, x) ∈ R×Rn.

The next proposition is a consequence of the preparation theorem that will be of service for
us.

Proposition 3.9. [V1] Let ξ : Rn → R be a nonnegative semialgebraic function. There exists a
finite semialgebraic partition of Rn such that over each element of this partition, the function ξ
is ∼R to a product of powers of distances to semialgebraic subsets of Rn.
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Proposition 3.10. [V1] Let B be a connected subset of Sn−1, λ0 ∈ B, and let ξ : Nλ0
→ R be

a continuous semialgebraic function. Let H be the graph of ξ for λ0. Suppose that B is regular
for H. Then, for any λ ∈ B the set H is the graph of a function ξλ : Nλ → R. Moreover the
set E(H;λ) is independent of λ ∈ B.

We now formulate some elementary observations that we shall need and which are taken from
[V1].
Observations. Let λ ∈ Sn−1 and r ∈ Q+.

(1) If A is a union of graphs for λ of some Q−Lipschitz functions then there exists r ∈ Q+

such that B(λ; r) is regular for A. Also, if B(λ; r) ⊆ Sn−1 is regular for the semialgebraic
set A ⊆ Rn, then A is the union of the graphs for λ of some Q−Lipschitz functions.
Moreover, if A is the graph for λ of a Lipschitz function ξ : Nλ → R then ξ is C-Lipschitz
with C ≤ 1

d(λ;τ(A)) .
(2) Every semialgebraic C−Lipschitz function ξ defined over a subset A of Rn may be

extended to a semialgebraic C−Lipschitz function ξ̂ defined over the whole of Rn.
(3) If A is the union of the graphs for λ of some semialgebraic functions θ1, . . . , θk over Nλ

we may find an ordered family of semialgebraic functions ξ1 ≤ · · · ≤ ξk such that A is
the union of the graphs of these functions for λ.

(4) Given a family of Lipschitz functions f1,t . . . , fk,t, t ∈ R, defined over R×Rn−1, we can
find some Lipschitz families of functions ξ1,t ≤ · · · ≤ ξl,t, t ∈ R, and a cell decomposition
D of R × Rn−1 such that for every cell D ∈ D, the functions |qn − fi,t(x)| (where
q = (t, x; qn)) are comparable with each other (for relation ≤) and comparable with the
functions fi,t ◦ πen on the cell [ξi|Dt ; ξi+1|Dt ].

3.2. Regular systems of hypersurfaces. We now adapt the techniques of [V1] to families in
order to prove Theorem 3.4.

The main tool of the proof of Proposition 3.3 is the notion of regular systems of hypersurfaces.
We shall generalize it to one parameter families, introducing the notion of families of regular
systems of hypersurfaces.

Definition 3.11. A family of regular systems of hypersurfaces of R × Rn is a family
H = (Hk;λk)1≤k≤b with b ∈ N, of semialgebraic families Hk of R × Rn together with elements
of λk ∈ Sn−1 such that the following properties hold for each k < b:

(i) For every t ∈ R, the setsHk,t andHk+1,t are the respective graphs for λk of two functions
ξk,t and ξ′k,t such that ξk,t ≤ ξ′k,t.

(ii) The functions ξk,t and ξ′k,t are C-Lipschitz with C ∈ Q (independent of t) and vary
continuously with respect to t.

(iii) For every t we have:

E(Hk+1,t;λk) = E(Hk+1,t;λk+1)

Let A be a semialgebraic family of R × Rn. We say that the family H is compatible with
A, if A ⊂

⋃b
k=1Hk. An extension of H is a family of regular systems of hypersurfaces H ′

compatible with the set
⋃b
k=1Hk.

Observe thatHk is by definition the graph of the function (x, t) 7→ ξk,t(x) for λk ∈ Sn−1 ⊂ Sn.
Hence, E(Hk,t;λk) is the fiber at t of the semialgebraic family E(Hk;λk).

Given a positive integer k < b, we set:

Gk(H) := E(Hk+1;λk) \ int(E(Hk;λk)).
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We shall write Λk(H) for the connected component of

{λ ∈ Sn−1 : λ is regular for the family Hk ∪Hk+1}

which contains λk. Note that by Proposition 3.10, the family Gk(H) may be defined using any
λ ∈ Λk(H).

We will say that another family of regular systems H ′ coincides with H outside Gk(H) if
for each j either H ′j ⊂ Gk(H) or there exists j′ such that H ′j = Hj′ .

Remark 3.12. It is always possible to assume that the Gk(H)’s are of nonempty interior.
Indeed if int(Gk(H)) = ∅ then Hk = Hk+1 and in this case we may remove (Hk;λk) from the
sequence.

Given λ ∈ Sn, we define π̃λ : Sn \ {±λ} → Sn ∩Nλ by π̃λ(u) := πλ(u)
|πλ(u)| .

Remark 3.13. Suppose B ⊂ Sn−2 to be regular for a subset A ⊂ Rn−1. Then, for any a ∈ Q+

the set
π̃−1en (B) ∩ {λ ∈ Sn−1 : d(λ; {±en}) ≥ a}

is regular for π−1en (A). Furthermore, if A is the graph of a Q−Lipschitz function for λ ∈ B, and
if B is connected, then π−1en (A) is the graph of a Q−Lipschitz function for any λ′ in

π̃−1en (B) ∩ {λ′ ∈ Sn−1/d(λ′; {±en}) ≥ a},

for any a ∈ Q+ (by Proposition 3.10). Moreover, in this case the following holds:

E(π−1en (A);λ′) = π−1en (E(A;λ)).

3.3. Some preliminary Lemmas. We want to prove that every semialgebraic one-parameter
family A ⊂ R × Rn with dimAt < n for every t ∈ R, admits a family of regular systems
compatible with it (Proposition 3.19). For this purpose, we prove some lemmas.

The following lemma says that we will be able to assume that the interiors of the Gk(H)’s
are connected.

Lemma 3.14. Let H be a family of regular systems of hypersurfaces. There exists an extension
Ĥ of H such that all the sets int(Gk(Ĥ)) are connected.

Proof. Let 1 ≤ m ≤ b − 1. Suppose that int(Gm(H)) is not connected. Let A1, . . . , Aν be the
connected components of int(Gm(H)). Set A′i = πλm(Ai). For t ∈ R, the fiber Ai,t is of the
form:

{q ∈ A′i,t ⊕ λm ·R / ξm,t(πλm(q)) < qλm < ξ′m,t(πλm(q))}.
Clearly ξm,t = ξ′m,t on the boundary of A′i,t. We thus may define some Lipschitz functions ηi,
1 ≤ i ≤ ν−1, as follows. We set over A′j,t, ηi,t := ξ′m,t, when 1 ≤ j ≤ i, and ηi,t := ξm,t whenever
i < j. Extend the function ηi,t by setting ηi,t := ξm,t = ξ′m,t on Nλm \ πλm(int(Gm(H))).

Therefore, we have that η1,t ≤ · · · ≤ η(ν−1),t. Now, it suffices to

• let Ĥk := Hk and λ̂k := λk if k ≤ m
• let Ĥk,t be the graph of ηk−m,t for λm (for every t ∈ R) and λ̂k := λm for m+ 1 ≤ k ≤
m+ ν − 1

• let Ĥk := Hk−ν+1 and λ̂k := λk−ν+1 if m+ ν ≤ k ≤ b+ ν − 1.

This is clearly a family of regular systems of hypersurfaces. Note that the int(Gk(Ĥ)), m ≤ k <
m+ ν, are the connected components of int(Gm(H)). �
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Given a family of regular systems of hypersurfaces (of R × Rn) H, it will be convenient to
extend the notations in the following way. Set for any t ∈ R: H0,t := {−∞} andHb+1,t := {+∞}.
By convention, all the elements of Sn−1 will be regular for these two families. We will also
consider that these two families of sets as the respective graphs of two functions which take −∞
and +∞ as constant values (for any λ). Define also λ0 := λ1, λb+1 := λb, as well as E(H0;λ0) :=
∅, G0(H) := E(H1;λ1), Gb(H) := R×Rn \ int(E(Hb;λb)), as well as E(Hb+1, λb+1) = R×Rn.
Remark that now R×Rn =

⋃b
k=0Gk(H).

Lemma 3.15. Let H = (Hk;λk)1≤k≤b be a family of regular systems of hypersurfaces and let
j ∈ {0, . . . , b}. Let X be a semialgebraic family of subsets of Gj(H) such that λj is regular for
X. Then H can be extended to a family of regular systems of hypersurfaces H ′ compatible with
X, which coincides with H outside Gj(H).

Proof. By property (i) of Definition 3.11, for every t, the sets Hj,t and Hj+1,t are the respective
graphs for λj of two functions ξj,t and ξ′j,t. By Observations (1) and (2), the sets Xt, t ∈ R, may
be included in a finite number of graphs for λj of functions, say θ1,t, . . . , θν,t, continuous with
respect to t and C-Lipschitz, with C ∈ Q independent of t. Furthermore, by Observation (3),
these families of functions can be assumed to be ordered and satisfy ξj,t ≤ θi,t ≤ ξ′j,t, for every
t. Now,

• let H ′k := Hk and λ′k := λk whenever 1 ≤ k ≤ j,
• let H ′k,t be the graph of θk−j,t for λj and λ′k := λj for j < k ≤ j + ν, t ∈ R,
• let H ′k := Hk−ν and λ′k := λk−ν , whenever j + 1 + ν ≤ k ≤ b+ ν.

Properties (i), (ii) and (iii) clearly hold by construction. �

Lemma 3.16. Let U1, . . . , Um be semialgebraic families covering R × Rn. There exist finitely
many semialgebraic families V1, . . . , Vp covering R×Rn such that:

(1) For every i ≤ p, there are j and j′ such that Vi ⊂ Uj ∪ Uj′ .
(2) For every i ≤ p and t ∈ R, the fiber (δVi)t has empty interior in Rn (see Notations 0.1

for δ).

Proof. Let f : R × Rn → R be the projection onto the x1-axis. Consider a C0 triangulation
h : |K| → R×Rn of f such that the families U1, . . . , Um are unions of images of simplices (up to
a homeomorphism we may assume that the domain of f is bounded). Let σ ∈ K be of dimension
(n+ 1). The set δh(σ) is the union of the images of the faces of σ of dimension < n+ 1. Thus,
δh(σ)t is of dimension n if and only if a face τ of σ of dimension n lies in the fiber σt. In this
case there must be another simplex l(σ) of which τ is also a face. The face τ is clearly always
unique.

If the fiber (δh(σ))t is of dimension less than n for any t then set l(σ) := σ. Let Vσ :=
cl(h(σ) ∪ h(l(σ))). The family Vσ, σ ∈ K, has the required properties. �

Lemma 3.17. Let A ⊂ R×Rn be a semialgebraic family of sets with int(At) = ∅ for any t ∈ R.
There exists an integer ν such that for any ε > 0 we can find a finite semialgebraic partition
(Ai)i∈I of R×Rn−1 such that for every i the set

∪t∈R τ(π−1en (Ai,t) ∩At)
is included in ν balls of radius ε (in Gn).

Proof. We can cover the Grassmanian by finitely many balls of radius ε. This gives rise to a
covering U1, . . . , Uk of A (via the Gaussian mappings At,reg 3 x 7→ TxAt,reg). Consider a cell
decomposition of R×Rn compatible with U1, . . . , Uk. The images of the cells under the canonical
projection onto R×Rn−1 constitute a covering having the desired property. �
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Remark 3.18. The integer ν is indeed bounded by the maximal number of connected compo-
nents of the fibers of the restriction of πen to A.

3.4. Existence of regular families. We are ready to associate a family of regular systems of
hypersurfaces to every semialgebraic family of nowhere dense sets.

Theorem 3.19. Given a semialgebraic family of sets A of R × Rn such that every fiber At is
of empty interior, there exists a family of regular systems of hypersurfaces of R×Rn compatible
with A.

Proof. Actually, we are going to prove by induction on n that there exists a family of regular
systems of hypersurfaces of R × Rn compatible with a given semialgebraic family A of R × Rn
(whose fibers have positive codimension) such that all the λk’s can be chosen in a given ball
B(λ; η) in Sn−1, for η ∈ Q+.

For n = 1 the result is clear. So, we assume that it is true for (n−1). Let A be a semialgebraic
family of R×Rn such that At has empty interior for every t and consider a ball B(λ; η) ⊂ Sn−1,
η ∈ Q+. We split the induction step into several steps.

Step 1. There exists a family of regular systems of hypersurfaces H = (Hk;λk)1≤k≤b with λk ∈
B(λ; η2 ) and such that for every k the family Gk(H)∩A has a regular vector P ∈ Sn−1\B(±λ, η2 ).

Take e ∈ Sn−1 such that ±e /∈ B(λ; η) (we may assume η small).
By Lemma 3.17, for any σ ∈ Q+, there exists a finite semialgebraic partition (Ai)i∈I of R×Ne

such that, for each i ∈ I, the set
⋃
t∈R τ(π−1e (cl(Ai,t))∩At) is included in the union of ν balls in

Gn of radius σ
2 . Consider such a partition for the σ given by Lemma 3.5. By Lemma 3.16, we

may assume that (δAi)t has empty interior for every t. Changing η, we may assume that η ≤ σ
4 .

Choose η′ ∈ Q+ such that we have in Sn−2:

(3.5) B(π̃e(λ); η′) ⊂ π̃e(B(λ;
η

2
)),

Apply the induction hypothesis (identify R × Ne with R × Rn−1) to the families δAi to get
a family of regular systems of R × Rn−1, H = (Hk;λk)k≤b, such that all the λk’s belong to
B(π̃e(λ); η′).

By lemma 3.14, up to a refinement, we may assume that each int(Gk(H)) is connected. We
may also assume it to be of nonempty interior (see remark 3.12).

We claim that for each j and k, either int(Gk(H)) is disjoint from Aj or int(Gk(H)) ⊂ Aj . To
see this, observe that, as H is compatible with the δAj ’s, all the sets Aj ∩ int(Gk(H)) are open
and of empty (topological) boundary in int(Gk(H)). Hence, if nonempty, these are connected
components of int(Gk(H)). But, as int(Gk(H)) is connected, this entails that Aj ∩ int(Gk(H))

is either the empty set or int(Gk(H)) itself, as claimed.
We turn to define the family of regular systems H claimed in step 1. For 1 ≤ k ≤ b, let:

Hk := π−1e (Hk).

Since λk ∈ B(π̃e(λ); η′), by (3.5), we have λk ∈ π̃e(B(λ; η2 )). Choose some λk ∈ π̃−1e (λk) ∩
B(λ; η2 ).

As λk ∈ B(λ; η2 ) and neither e nor −e belongs to B(λ; η) we have:

d(λk;±e) ≥ η

2
, ∀ k ≤ b.

So, by Remark 3.13 (identify again R × Ne with R × Rn−1), the set Hk,t is the graph of a
semialgebraic Lipschitz function. Moreover, as H satisfies (i − iii), again by Remark 3.13,
conditions (i− iii) are clearly fulfilled by H := (Hk;λk)k≤b.
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By Lemma 3.5 and our choice of σ, for all m, the family A ∩ int(Gm(H)) is the union of
finitely many semialgebraic families having a common regular element P ∈ Sn−1 (since we have
seen that each int(Gm(H)) is included in Aj for some j). Moving slightly P , we may assume
that d(P,±λ) ≥ η (we have assumed η ≤ σ

4 ).
This completes the first step.

The flaw of the first step is that the regular vector that we get for Gm(H) ∩ A might not be
in Λm(H). If it belongs to this set, Lemma 3.15 is enough to conclude. The next step provides
another system Ĥ. We will then have to find (in Step 3) a common refinement of H and Ĥ,
obtained at step 1 and 2 respectively.

Step 2. Fix m ≤ b. There exists a family of regular systems of hypersurfaces Ĥ such that for
every k, λ̂k belongs to Λm(H) and is regular for Gm(H) ∩Gk(Ĥ) ∩A.

Note that as λm is regular for the semialgebraic family of sets Hm∪Hm+1, there exists r ∈ Q+

such that B(λm; r) is regular for Hm ∪ Hm+1. Taking r smaller if necessary, we may assume
that r ≤ η

2 .
Let r′ ∈ Q+ be such that we have in Sn−2:

(3.6) B(π̃P (λm); r′) ⊂ π̃P (B(λm;
r

2
)).

To complete the proof of step 2 we need a lemma.

Lemma 3.20. Let l in Sn−1, r ∈ Q+ and µ ∈ N. Let C be a subset of Gn and P ∈ Sn−1 such
that:

(3.7) d(P ;C) ≥ σ,

with σ ∈ Q+. There exists α ∈ Q+ such that for any P1, . . . , Pµ in C and any y ∈ π̃P (B(l; r2 ))

there exists λ̂ ∈ B(l; r) ∩ π̃−1P (y) such that:

d( λ̂;∪µi=1Pi) ≥ α.

The proof of this lemma is postponed. We first see why it is enough to carry out the proof
of step 2. Let µ be the maximal number of points of a finite fiber of the restriction of πP to
A∩Gm(H). Applying this lemma with this integer µ, with C = ∪t∈R τ(At∩Gm(H)) and l = λm,
we get a positive constant α.

Applying Lemma 3.17 to Gm(H)∩A (identify πP with πen) provides a finite covering (A′i)i∈I′

of R×NP such that for any i ∈ I ′ and any t:

τ(π−1P (A′i,t) ∩Gm(H)t ∩At) ⊂
µ⋃
j=1

B(Pj ;
α

2
),

for some P1, . . . , Pµ (depending on i ∈ I ′) in τ(A ∩ Gm(H)). By Lemma 3.16, we may assume
that (δA′i)t has empty interior for every t and i.

By Lemma 3.20, for any i ∈ I ′ and any y ∈ π̃P (B(λm; r2 )), there exists λ̂ ∈ B(λm; r)∩ π̃−1P (y)
such that for any t ∈ R:

(3.8) d
(
λ̂ ; τ(π−1P (A′i,t) ∩Gm(H)t ∩At)

)
≥ α

2
.

Apply the induction hypothesis to get a family of regular systems of hypersurfaces H ′′ of R×NP
(identify NP with Rn−1) compatible with the δA′i’s. Do it in such a way that all the associated
lines λ′′k are elements of B(π̃P (λm); r′) (where r′ is given by (3.6)).
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Define now:

(3.9) Ĥk,t := π−1P (H ′′k,t).

The compatibility with the sets δA′i implies that every int(Gk(H ′′)) is included in A′i for some
i (by the same argument that the one we used in Step 1 for Gk(H) and the partition (Ai)i∈I).

As a matter of fact, according to (3.8) for y = λ′′k , we know that for every integer k ≤ b′′ there
exists λ̂k ∈ B(λm; r) ∩ π̃−1P (λ′′k) such that for any t ∈ R:

(3.10) d
(
λ̂k ; τ(π−1P (Gk(H ′′)t) ∩Gm(H)t ∩At)

)
≥ α.

Let us check that Ĥ := (Ĥk; λ̂k)k≤b̂ (where b̂ := b′′) is the desired family of regular systems
of hypersurfaces. For this purpose, observe that, since neither P nor −P belongs to B(λ; η), we
have for each k (recall that r ≤ η

2 ):

d(λ̂k;±P ) ≥ r

2
.

By construction and Remark 3.13, as λ̂k ∈ π̃−1P (λ′′k), this implies that the family Ĥ fulfills the
three conditions of definition 3.11.

Furthermore, as B(λm; r) ⊂ B(λ; η) (since r ≤ η
2 and λm ∈ B(λ, η2 )), all the λ̂k’s belong to

B(λ; η). Note also that as B(λm; r) is regular for Hm ∪Hm+1, the vector λ̂k belongs to Λm(H).
This completes the proof of the second step.

The inconvenient of Step 2 is that the provided vector is regular for the family A∩Gm(H)∩
Gk(Ĥ) (instead of A ∩Gk(Ĥ)). If Ĥ were an extension of the family H constructed in Step 1,
this would be no problem since in this case we would have Gk(Ĥ) ⊂ Gm(H) (or int(Gk(Ĥ)) ∩
int(Gm(H)) = ∅). Thus, we will have to find a common extension H̃ of H and Ĥ given by steps
1 and 2 respectively. This is what is carried out in the third step.

Step 3. There exists an extension H̃ = (H̃k, λ̃k)k≤b̃ of H which coincides with H outside Gm(H)

and such that λ̃k is regular for the family A ∩Gk(H̃) ∩Gm(H) for all k.

Let k ≤ b̂ be an integer. Since λ̂k ∈ Λm(H), by Proposition 3.10, the sets Hm and Hm+1

are respectively the graphs for λ̂k of two functions µk and µ′k. Moreover, the set Ĥk is also the
graph for λ̂k of a function ξ̂k. Define:

ηk := min(max(µk; ξ̂k);µ′k)

in order to get a function whose graph is included in Gm(H). Now we define the desired regular
family (H̃k; λ̃k)1≤k≤b̃ as follows.

• Let H̃k := Hk and λ̃k := λk if k < m.
• Let H̃m := Hm and λ̃m := λ̂1.
• Let H̃k be the graph of ηk−m for λ̂k−m, and let λ̃k := λ̂k−m, wheneverm+1 ≤ k ≤ m+ b̂.
• And finally let H̃k := Hk−b̂ and λ̃k := λk−b̂ if m+ b̂+ 1 ≤ k ≤ b+ b̂.

We shall check that the properties (i− iii) hold for the family H̃ in every case.
For k < m− 1, or k ≥ m+ b̂+ 1, the result is clear since the family H̃ is indeed the family H.
For k = m − 1, properties (i − iii) follow from (i − iii) for H and Proposition 3.10 since we

have assumed λ̂1 ∈ Λm(H).
It remains to check (i− iii) for H̃k+m, with 0 < k ≤ b̂. Let us check (i) in this case.
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By (i) for Ĥ, the set Ĥk+1 is the graph for λ̂k of a function ξ̂′k such that ξ̂k ≤ ξ̂′k. Define now:

η′k = min(max(µk; ξ̂′k);µ′k).

Claim. The graph of η′k for λ̂k is that of ηk+1 for λ̂k+1.
To see this, note that the graph of η′k (resp. ηk) matches with Ĥk+1 over E(Hm+1; λ̂k) \

E(Hm; λ̂k) (resp. λ̂k+1). But, by Proposition 3.10, the sets E(Hm; l) and E(Hm+1; l) do not
depend on l ∈ Λm(H). As λ̂k and λ̂k+1 both belong to Λm(H), this already shows that the two
graphs involved in the above claim match over int(Gm(H)).

The graph of η′k (resp. ηk+1) for λ̂k (resp. λ̂k+1) is also constituted by the points of Hm \
int(E(Ĥk+1, λ̂k)) (resp. λ̂k+1) on the one hand and by the points of Hm+1 ∩E(Ĥk+1, λ̂k) (resp.
λ̂k+1) on the other hand. By (iii) for Ĥ, the claim ensues.

This claim proves that H̃m+k+1 is the graph of η′k for λ̂k. Therefore, to check (i− iii), we just
have to prove that ηk ≤ η′k. But, as ξ̂k ≤ ξ̂′k, this immediately comes down from the respective
definitions of η′k and ηk. This establishes (i) and (ii) (for H̃k+m, k ≤ b̂).

Let us check property (iii) for H̃k+m, k ≤ b̂. If k = b̂ it is a consequence of Proposition 3.10
since we have assumed that λ̂k belongs to Λm(H).

Let k be such that 0 ≤ k ≤ b̂− 1. First note that by (iii) for Ĥ we have:

E(Ĥk+1; λ̂k) = E(Ĥk+1; λ̂k+1).

But, E(H̃k+m+1; λ̂k) (resp. λ̂k+1) coincides with E(Ĥk+1; λ̂k) (resp. λ̂k+1) over int(Gm(H)).
It is also constituted by the points of E(Hm, λ̂k) (resp. λ̂k+1) and the points of E(Hm+1, λ̂k) ∩
E(Ĥk+1; λ̂k) (resp. λ̂k+1). As λ̂k+1 and λ̂k both belong to Λm(H), this establishes (iii).

To complete the proof of Step 3, it remains to make sure that for every k ≤ b̂ the line λ̃k+m
is regular for Gk+m(H̃) ∩Gm(H) ∩A. By construction we have λ̃m = λ̂1, λ̃k+m = λ̂k and:

(3.11) Gk+m(H̃) ⊂ Gk(Ĥ) ∩Gm(H),

for each 0 ≤ k ≤ b̂.
As for any k the vector λ̂k is regular for A∩Gk(Ĥ)∩Gm(H), this implies that for each k ≤ b̂,

the vector λ̃k+m is regular for Gk+m(H̃) ∩A. This completes the third step.

Finally, let us show why Step 3 is enough to conclude. By Lemma 3.15 (applied to H̃ of Step
3), we may extend H̃ to a family compatible with the set

Gm(H) ∩ ∪b̃k=0Gk(H̃) ∩A = Gm(H) ∩A.

Since all the extensions coincide with H outside Gm(H), we may carry out the construction
on all the Gm(H)’s successively. This provides the desired family. �

It remains to prove Lemma 3.20. The lemma below describes a property of π̃P that we need
for this purpose.

Lemma 3.21. Let λ and P in Sn−1, T ∈ Gn and x ∈ T ∩ π̃−1P (λ). Let v be a unit vector tangent
at x to the curve π̃−1P (λ). Then:

d(P ;T ) ≤ d(v;Sn−1 ∩ T ).

Proof. Let w be the vector of Sn−1 ∩ T which realizes d(v;Sn−1 ∩ T ). Remark that the vectors
x, P , and v are in the same two dimensional vector space. Moreover (x; v) is an orthonormal
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basis of this plane. Let P = αx+ βv with α2 + β2 = 1. Then, as x and w both belong to T we
have

d(P ;T ) ≤ |P − (αx+ βw)| = |β| · |v − w| ≤ d(v;Sn−1 ∩ T ).

�

Proof of Lemma 3.20. We will work up to a (“projective“) coordinate system of Sn−1 defined as
follows. Let U+

i (resp. U−i ) denote

{x ∈ Sn−1/xi ≥ ε}

(resp. xi ≤ −ε) with ε ∈ Q+ small enough. Define then: hi : Ui → Rn−1 by hi(x1; . . . ;xn) =

(x1

xi
; . . . ; x̂ixi ; . . . ;

xn
xi

). Note that hi is a Q-bi-Lipschitz homeomorphism.
Through such a chart, the set Sn−1 ∩NP is a vector subspace and π̃P becomes an orthogonal

projection along a line, say Q. By Lemma 3.21, hypothesis (3.7) implies that there exists u ∈ Q+

such that:
d(Q;T ) ≥ u,

for any T ∈ C ⊂ Gn−1.
It is then an easy exercise of elementary geometry to derive from this that for any x ∈ Q and

any P1, . . . , Pµ in C:

(3.12) d
(
x;∪µi=1Pi ∩Q

)
≤ 1

u
· d
(
x ;∪µi=1Pi

)
.

For any y ∈ π̃P (B(l; r2 )) the length of the line segment π̃−1P (y) ∩ B(l; r) is bounded below away
from zero by a strictly positive rational number α0.

Let α be the rational number α0u
4µ . Then, using (3.12) one can easily see that if the conclusion

of the lemma failed for some y ∈ π̃P (B(l; r2 )), we could cover the segment π̃−1P (y) ∩B(l; r) by µ
segments of length less than α0

2µ . This contradicts the fact that the length of this segment is not
less than α0. �

3.5. Proof of Proposition 3.4.

Proof. By Proposition 3.19 there exists a family of regular systems of hypersurfaces H =
(Hk;λk)1≤k≤b compatible with A. We shall define h over E(Hk;λk), by induction on k, in
such a way that h(E(Hk;λk)) = E(Fk; en) (so that h(Hk) = Fk) where Fk is the graph of a
function ηk : R×Rn−1 → R for en.

For k = 1 choose an orthonormal basis of Nλ1 and set h(q) := (xλ1 ; qλ1) where xλ1 are the
coordinates of πλ1(q) in this basis. Let k ≥ 1. By (i) of Definition 3.11, the sets Hk and Hk+1

are the graphs for λk of two functions ξk and ξ′k. For q ∈ E(Hk+1;λk) \ E(Hk;λk) define h(q)
as the element:

h(πλk(q) + ξk(πλk(q)) · en) + (qλk − ξk(πλk(q)))en.

Thanks to the property (iii) of Definition 3.11 we have E(Hk+1;λk+1) = E(Hk+1;λk), and
hence h is actually defined over E(Hk+1;λk+1). Since ξk,t is C-Lipschitz with C ∈ Q, ht is a
family of bi-Lipschitz homeomorphisms. Note also that the image is E(Fk+1; en) where Fk+1 is
the graph (for en) of the family of Lipschitz functions on R×Rn−1:

ηk+1(x) := ηk(x) + (ξ′k − ξk) ◦ πλk ◦ h−1(x; ηk(x)).

This gives h over E(Hb;λb). To extend h to the whole of R × Rn do it similarly as in the case
k = 1. �
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4. On families of semialgebraic functions

Let k(0+) be the extension of R corresponding to the ultrafilter 0+, constituted by all the
semialgebraic sets of R containing a right-hand-side neighborhood of the origin (see [BCR]).
The field k(0+) is the real closure of the fraction field of the ring R[Y ] endowed with the order
relation that makes the indeterminate Y smaller than any element of R. We shall denote by
Y (0+) the indeterminate regarded in k(0+).

Lemma 4.1. For any u ∈ k(0+) there is a rational number ν such that:

u ∼R Y (0+)ν .

Proof. There exists a semialgebraic function ξ : (0, ε)→ R such that ξ(Y (0+)) = u (see [BCR]).
By the preparation theorem, there exist a and b in R and ν ∈ Q such that:

ξ(x) ∼Q b · (x− a)ν .

Thus, ξ(Y (0+)) ∼R Y (0+)ν if a = 0 and ξ ∼R 1 otherwise. �

Proposition 4.2. Let ξ : k(0+)n → k(0+) be a nonnegative semialgebraic function. There exists
a cell decomposition of k(0+)n such that over every cell:

(4.13) ξ(x) ∼R Y (0+)r · d(x,W1)r1 · · · d(x,Wk)rk

where the Wi’s are semialgebraic subsets of k(0+)n and r as well as the ri’s are rational numbers.

Proof. We prove it by induction on n. The case n = 0 follows from Lemma 4.1.
Assume that the lemma is true for (n− 1) and apply the preparation theorem to the function

ξ. Let n ≥ 1 and let λ1, . . . , λN be the elements of Sn−1 given by Lemma 3.6. Applying the
preparation theorem (Theorem 3.7) to ξ◦Ai, where Ai is an orthogonal linear mapping of k(0+)n

sending the vector en onto λi for i ∈ {1, . . . , N}, and taking a common refinement of the images
under the A−1i of all the obtained partitions we get a semialgebraic partition (Vj)j∈J of k(0+)n.
Therefore, over each Vj and for each i we can find continuous functions a, θ : πλi(Vj) → k(0+)
and r ∈ Q such that:

(4.14) ξ(q) ∼Q (qλi − θ(xλi))r a(xλi),

for q = xλi + qλiλi ∈ πλi(Vj)⊕ k(0+) · λi.
Apply Proposition 3.6 to the family constituted by all the sets of the partition (Vj)j∈J and

the zero locus of ξ. This gives rise to a partition (V ′j )j∈J′ such that each V ′j which is open is of
the form

{q ∈ πλi(V ′j ) ⊕ k(0+) · λi : ξ1(πλi(q)) < qλi < ξ2(πλi(q))},
for some i ∈ {1, . . . , N}, where ξν : πλi(V

′
j ) → k(0+), ν = 1, 2, are Q−Lipschitz functions, and

such that the function ξ is of the form (4.14) on V ′j for each vector λi.
Thanks to the induction hypothesis (identify Nλi with k(0+)n−1) it is sufficient to prove the

result for the function |qλi − θ(πλi(q))|.
Fix j ∈ J ′. Due to the compatibility of the partition with the zero locus of ξ, we have, for

every x, either θ(x) ≤ ξ1(x) or θ(x) ≥ ξ2(x). Up to a subpartition we may assume that only one
case occurs over V ′j , for instance θ ≤ ξ1. Writing

qλi − θ(πλi(q)) = (qλi − ξ1(πλi(q)) + (ξ1(πλi(q))− θ(πλi(q))),
we see that (up to a refinement we may assume that these functions are comparable) |qλi −
θ(πλi(q))| is ∼Q either to |qλi−ξ1(πλi(q))| or to |ξ1(πλi(q))−θ(πλi(q))|. For the former function,
since ξ1 is Lipschitz, |qλi − ξ1(xλi)| is ∼Q to the distance to the graph of ξ1 for λi. For the latter
one, this is a consequence of the induction hypothesis. For the V ′j ’s having positive codimension,
one may deduce the result from the induction hypothesis. �



194 GUILLAUME VALETTE

5. Proof of Theorem 2.4

Proof. We first check that we can assume, without loss of generality, that the mapping f : X → R
is the projection on the first coordinate. Indeed, if we replace X with

X̂ := {(y, x) ∈ R×X : y = f(x)},

and prove the result for f̂ : X̂ → R, defined by f̂(y, x) := y, we are done.
We shall establish a stronger result, proving by induction on n the following facts:
(Pn). Let f : [−M,M ] × Rn → R, M > 0, be defined by f(y, x) := y. Let A1, . . . , Ak

be semialgebraic subfamilies of [−M,M ] × Rn and let η1, . . . , ηl be semialgebraic families of
nonnegative functions on [−M,M ]×Rn. There is a triangulation (K,φ, ψ) of f such that:

(1) (2.3) holds.
(2) The Ai’s are union of images (by ψ) of simplices.
(3) The functions ηi ◦ ψ are ∼R to standard simplicial functions.
For n = 0 the result is clear. Assume that it is true for some n ≥ 0 and let us check it for

(n+ 1). We denote by π : R×Rn+1 → R×Rn the canonical projection.
We claim that there is a cell decomposition of R × Rn+1 such that for every cell C, we can

find some semialgebraic families W1, . . . ,Wc of R × Rn+1 as well as, for each i, some rational
numbers r, r1, . . . , rc, and y0 ∈ R, such that for (y, x) ∈ C ⊂ [−M,M ]×Rn+1:

(5.15) ηi,y(x) ∼R |y − y0|rd(x,W1,y)r1 · · · d(x,Wc,y)rc ,

where the constants of this equivalence are independent of y (below all the constants will be
independent of the parameter y).

Let α ∈ ˜[−M ;M ] and denote by k(α) the corresponding extension of R. If α has a specializa-
tion then, by Proposition 4.2, we can find U ∈ α such that (5.15) holds true for the restriction
of the ηi’s to U ×Rn+1. If α has no specialization then every element of k(α) is bounded by an
element of R. Hence, in this case (5.15) follows from Proposition 3.9 (applied to ηi,α). In any
case we thus find an element U ∈ α along which the desired equivalence may be established.
By compactness of the real spectrum, we may extract a finite covering of [−M,M ]. Taking a
common refinement of all the corresponding cell decompositions, we get a cell decomposition E
having the required property (5.15). We may assume that this cell decomposition is compatible
the Ai’s.

By Proposition 3.4, up to a family of bi-Lipschitz maps (that we will identify with the identity),
we may assume that all the cells of this cell decomposition which are graphs (i.e. which are not
bands) as well as the (topological) boundaries of theWj,y’s (see (5.15)) are included in the union
of a finite number of graphs of families of Lipschitz functions θ1,y ≤ · · · ≤ θµ,y (continuous with
respect to y).

Applying Observation (4) to the θi’s and to the functions (y, x) 7→ d(x;π(δWi,y)), we see that
there exist a cell decomposition D of R × Rn and finitely many families of Lipschitz functions
ξ1,y ≤ · · · ≤ ξm,y whose graphs contain the graphs for the θi,y’s, such that for every D ∈ D, all
the functions |qn+1 − θν,y(π(q))| are comparable (for ≤) with each other and comparable with
the functions d(x;π(δWi,y ∩ Γθν,y )) on the set [ξi,y|Dy ; ξi+1,y|Dy ].

Consider a semialgebraic cell decomposition of R×Rn+1 adapted to the graphs of the families
of functions ξi, the cells of D and E , as well as the sets Wj . Let X1, . . . , Xs be the images of the
cells under π. Refining this partition, we may assume that the functions d(x;π(δWi,y ∩ Γθν ,y))
are comparable with respect to each other on the cells. Apply the induction hypothesis to
get a triangulation (K,φ, ψ) of f (restricted to [−M,M ] × Rn) such that the Xi’s are unions
of images of open simplices. Moreover, by (3) of the induction hypothesis, we may do it in
such a way that over each simplex, each function |ξj − θi| ◦ ψ as well as all the functions
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(y, x) 7→ d(ψy(x);π(δWj,y ∩ Γθi,y )), and ηk,y(ψy(x), ξi,y(ψy(x))), are ∼ to standard simplicial
functions.

Let ζ1 ≤ · · · ≤ ζm be piecewise linear functions over |K| such that ζi ≡ ζi+1 on the set
{ξi ◦ ψ = ξi+1 ◦ ψ} (this set is a subcomplex of K). Let also ζ0 := ζ1 − 1 and ζm+1 := ζm + 1.
Let

N = {(y, x, qn+1) ∈ R×Rn ×R : ζ0,y(x) ≤ qn+1 ≤ ζm+1,y(x)}.
We obtain a polyhedral decomposition of N by taking the respective inverse images by π|N of

the simplices of K of dimension n on the one hand, and by taking all the images of the simplices
of |K| by the mappings x→ (x; ζi(x)) on the other hand. After a barycentric subdivision of this
polyhedra we get a simplicial complex L.

Let K̃ be the union of the open simplices σ included in

{(y, x, qn+1) ∈ |K| ×R : ζ0,y(x) < qn+1 < ζm+1,y(x)}.

Define now for y ∈ R over K̃y the desired family of homeomorphisms ψ̃y in the following way:

ψ̃y(x; t ζi,y(x) + (1− t)ζi+1,y(x)) = (ψy(x); t ξi,y(ψy(x)) + (1− t)ξi+1,y(ψy(x)))

for 1 ≤ i ≤ m− 1, x ∈ Rn and t ∈ [0; 1]. Define also:

ψ̃y(x; t ζ0,y(x) + (1− t) ζ1,y(x)) = (ψy(x); ξ1(ψy(x))− t

1− t
)

and
ψ̃y(x; t ζm+1,y(x) + (1− t) ζm,y(x)) = (ψy(x); ξm,y(ψy(x)) +

t

1− t
)

for t ∈ [0; 1). This defines a family of homeomorphisms ψ̃ : |K̃| → [−M,M ]×Rn+1.
We shall check that over each simplex σ the mapping ψ̃ fulfills (2.3). Let σ ⊂ [ζi, ζi+1] be a

simplex of K̃, q and q′ two points of σy, y ∈ R fixed. The points q and q′ may be expressed
q = (x; tζi(x) + (1 − t)ζi+1(x)) and q′ = (x′; t′ζi(x

′) + (1 − t′)ζi+1(x′)) for some 0 ≤ i ≤ m and
some (t; t′) in [0; 1]2. Then define

q′′ := (x; t′ζi(x) + (1− t′)ζi+1(x)).

We begin with the case where 1 ≤ i ≤ m − 1. Let p = ψ̃y(q), p′ = ψ̃y(q′) and p′′ = ψ̃y(q′′).
We may consider x, x′, p, p′ and p′′ as functions of q and q′. As ξi,y and ξi+1,y are Lipschitz
functions we have over σ × σ:

(5.16) |p− p′| ∼ |p− p′′|+ |ψy(x)− ψy(x′)|.

Let σ′ be the simplex of K containing π(σ). Thanks to the induction hypothesis, we may find
some functions ϕσ′,1, . . . , ϕσ′,n and a tame system of coordinates (x1,σ′ ; . . . ;xn,σ′) such that for
any x and x′ in σ′y:

(5.17) |ψy(x)− ψy(x′)| ∼
n∑
l=1

ϕσ′,l(x;x′)|xl,σ′ − x′l,σ′ |.

The result is therefore clear if ζi = ζi+1 on σ′. Otherwise, as π(q) = π(q′′), by construction we
have:

|pn+1 − p′′n+1| ∼ |qn+1 − q′′n+1 | ·
ξi+1,y(ψy(x))− ξi,y(ψy(x))

ζi+1,y(x)− ζi,y(x)
.

Recall that we have constructed the triangulation (K,φ, ψ) in such a way that for every i,
(ξi+1 − ξi) ◦ ψ is ∼ to a standard simplicial function of K, say ωi. The composite ωi ◦ π gives a
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standard simplicial function of K̃. The functions ζi and ζi+1 define a tame coordinate on Rn+1

that we will denote by qn+1,σ. By the preceding estimation, we have:

(5.18) |p− p′′| ∼ |qn+1,σ − q′n+1,σ | · ϕσ,n+1(q; q′)

for a standard simplicial function ϕσ,n+1 (which here actually depends only on q).
Define for j < n+ 1:

ϕσ,j(q; q
′) = ϕσ′,j(π(q);π(q′)).

Then by (5.18), (5.17) and (5.16) we get the desired equivalence (in the case 1 ≤ i ≤ m− 1).
The case i = 0 and m are dealt in an analogous way (see [V1] for details). This proves that

ψ̃y satisfies (2.3). By construction, the Aj ’s are images of open simplices.
It remains to check that the functions ηj ◦ ψ̃ are ∼ to standard simplicial functions over any

simplex σ. Let σ ∈ K̃; if the set ψ̃(σ) is included in the graph of ξi for some i, the result follows
by induction. So, assume that it sits in ]ξi; ξi+1[, for some 1 ≤ i ≤ m − 1. By construction, on
ψ̃(σ), the ηj,y’s are ∼R to a product of powers of distances to the Wj,y’s (see (5.15)).

Therefore, it suffices to show the result for the functions q 7→ d(ψ̃y(q);Wj,y). As (ψ̃; K̃) is
also a triangulation of the sets Wj , for each j, either ψ̃(σ)y is included in Wj,y or the distance
to Wj,y is ∼ to the distance to its boundary. In the former case the result is obvious since the
function q 7→ d(ψ̃y(q);Wj,y) is zero over σ. By construction, the boundary δWj is included in
the union of the Γθν,y ’s.

Moreover, we have for any ν ∈ {1, . . . , µ}:

(5.19) d(q; δWi,y ∩ Γθν,y ) ∼ |qn+1 − θν,y(x)|+ d(x;π(δWi,y ∩ Γθν,y ))

where q = (x; qn+1) in ψ̃y(σy) ⊂ Rn ×R.
As both terms of the right-hand-side are positive, the sum is ∼ to the max of these two

terms that is to say is ∼ to one of them since they are comparable over ψ̃(σ). Note that
clearly d(q; δWi,y) = min

1≤ν≤µ
d(q; δWi,y ∩ Γθν,y ). But as by construction the functions gν,y :=

d(π(q);π(δWi,y ∩ Γθν,y )) are comparable with each other and comparable with all the functions
|qn+1− θν,y(x)|, the function d(q; δWi,y) is equivalent over ψ̃y(σy) to one of the functions gν,y or
to some function |qn+1 − θν,y(x)|.

Recall that we have required the triangulation (ψ;K) to be such that

(y, x) 7→ d(ψy(x);π(δWj,y ∩ Γθν,y ))

is ∼ to a standard simplicial function ofK. Hence, by (5.19), it suffices to prove that the function
(y, q) 7→ |ψn+1,y(q)− θν,y(π(ψy(q)))| is ∼ over σ to a standard simplicial function of K̃. Assume
that σ ⊂ [ζi; ζi+1]. We may write for p = (y, x, pn+1) ∈ σ ⊂ R×Rn ×R:

|pn+1 − θν ◦ ψ| = pn+1 − ξi ◦ ψ + (ξi ◦ ψ − θν ◦ ψ)

if θν ≤ ξi on π(ψ̃(σ)), and

|pn+1 − θν ◦ ψ| = ξi+1 ◦ ψ − pn+1 + (θν ◦ ψ − ξi+1 ◦ ψ)

if θν ≥ ξi+1 (with the convention ξ0 = −∞, ξm+1 = ∞). By (5.18), we have over σ for
q = ψ̃−1(p) = (y, z, qn+1):

pn+1 − ξi,y(ψy(x)) ∼ |qn+1 − ζi,y(z)| . ϕσ,n+1(q; q′).

The function |qn+1−ζi,y(x)| is∼ to a standard simplicial function. As all the |ξi,y◦ψy−θν,y◦ψy|
have been assumed to be equivalent to standard simplicial functions, the theorem is proved. �
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6. bi-Lipschitz triviality of families of functions

Definition 6.1. We say that a semialgebraic family of functions f : X → Rp × R is fiberwise
semialgebraically bi-Lipschitz trivial along W ⊂ Rp if there exist two families of semial-
gebraic homeomorphisms h : W × Rn → W × Rn and φ : W × R → W × R, such that for any
t ∈W :

(1) ht(Xt0) = Xt and φ−1t ◦ ft ◦ ht = ft0 , t0 ∈W.
(2) φt is bi-Lipschitz.
(3) There is a constant Ct ∈ R such that the restriction of ht to every fiber f−1t (y) is

Ct-bi-Lipschitz.
In the case where ht is bi-Lipschitz (i.e. not only the restriction to the fibers but ht itself),

we say that it is semialgebraically bi-Lipschitz trivial along W .

Remark 6.2. It is worthy of notice that, in the definition of fiberwise bi-Lipschitz triviality, the
mapping ht is not only assumed to be C-bi-Lipschitz on every fiber: it is a homeomorphism.

The flaw of bi-Lipschitz triviality of functions is that it admits continuous moduli: the Lips-
chitz counterpart of Theorem 1.6 is not true, even for families as simple as two variable polyno-
mials. The counterexample is due to A. Parusiński and J.-P. Henry.

Example 6.3. In [H-P] J-P. Henry and A. Parusiński gave the following example: ft(x, y) :=
x3 +y6 +3t2xy4. They proved by exhibiting some metric invariants for functions that there is no
interval W of R along which this family is semialgebraically bi-Lipschitz trivial. As bi-Lipschitz
triviality can be derived from triangulability (see proofs of Theorems 1.6 and 6.4), this example
shows that in Theorem 2.4 we could not require (2.3) to hold for all couples (q, q′) (not necessarily
in the same fiber).

Nevertheless, fiberwise bi-Lipschitz triviality does not admit continuous moduli. This is the
main theorem of this article.

Theorem 6.4. Given a semialgebraic family of Lipschitz functions f : X → Rp×R there exists
a semialgebraic partition V1, . . . , Vm of Rp such that for every i, f is fiberwise semialgebraically
bi-Lipschitz trivial along Vi.

Proof. We apply exactly the same argument as in the proof of Theorem 1.6, replacing Theorem
1.2 with Theorem 2.4. As in the proof of the latter theorem, possibly replacing ft with u ◦ ft
where u(y) := y

1+|y| , we may assume that f is bounded (if φ : R → R is bi-Lipschitz and
φ([−1, 1]) = [−1, 1] then u−1 ◦ φ ◦ u is bi-Lipschitz). By (2.3), the homeomorphisms ht (at the
end of the proof of Theorem 1.6) are Ct-bi-Lipschitz on the fibers f−1t (y) with Ct independent
of y. �

Remark 6.5. In the above theorem, we could also require the homeomorphism ht (see Definition
6.1) to satisfy

d(ht(x), f−1t (0)) ∼ d(x, f−1t0 (0)).
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