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POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES

TARO FUJISAWA

Abstract. We construct polarizations of mixed Hodge structures on the relative log de Rham

cohomology groups of a projective log deformation. To this end, we study the behavior of
weight and Hodge filtrations under the cup product and construct a trace morphism for a

projective log deformation.

Introduction

0.1. In [22] Steenbrik introduced the notion of the log deformation and constructed mixed Hodge
structures on the relative log de Rham cohomology groups of a projective log deformation. In
this article, we construct natural polarizations on these mixed Hodge structures in the sense of
Cattani-Kaplan-Schmid [2, Definition (2.26)].

A typical example of log deformations is the singular fiber of a semistable reduction over the
unit disc. For the case of a projective semistable reduction over the unit disc, the mixed Hodge
structure on the relative log de Rham cohomology groups of the singular fiber is considered as
the limits of Hodge structures on the cohomology groups of general fibers, and called the limit-
ing mixed Hodge structures. These mixed Hodge structures were constructed by two different
methods, the transcendental method in [20] and the algebro-geometric method in [21]. In fact,
Schmid’s nilpotent orbit theorem and SL2-orbit theorem imply that a variation of polarized
Hodge structures on the punctured disc degenerates to a polarized mixed Hodge structure ([20,
(6.16) Theorem]). For the case of a projective semistable reduction over the unit disc, the Hodge
structures on the cohomology groups of fibers induce variations of polarized Hodge structures
on the punctured disc. By applying Schmid’s result above to these variations of polarized Hodge
structures, we obtained the limiting mixed Hodge structures. Here we note that these mixed
Hodge structures are canonically polarized by their construction. On the other hand, Steen-
brink constructed mixed Hodge structures on the relative log de Rham cohomology groups of
the singular fiber of a projective semistable reduction over the unit disc by algebro-geometric
methods. The coincidence between Steenbrink’s mixed Hodge structures and Schmid’s mixed
Hodge structures was proved in [19, 4.2.5 Remarque] and in [23, (A.1)] independently. The moti-
vation of this article is to construct the polarizations on the limiting mixed Hodge structures by
algebro-geometric methods in Steenbrink’s approach. Once we obtain polarizations in Theorem
8.16 below, the remaining task is to prove that our polarizations coincide with the ones given in
[20, (6.16) Theorem] for the case of a projective semistable reduction.

The main result of this article concerns the question whether the mixed Hodge structures
on the relative log de Rham cohomology groups of a projective log deformation yield nilpotent
orbits. In fact, Kashiwara-Kawai [13, Proposition 1.2.2] and Cattani-Kaplan [1, Theorem (3.13)]
show that a polarized mixed Hodge structure yields a nilpotent orbit and vice versa. Therefore
the main result of this article implies that the relative log de Rham cohomology groups of a
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projective log deformation give us nilpotent orbits. Thus, it is expected that a projective log
deformation yields polarized log Hodge structures on the standard log point (see Kato-Usui [15,
2.5]) as a by-product of our main result. This question is treated in the forthcoming article [9].

0.2. Let Y −→ ∗ be a projective log deformation of pure dimension n. In order to put mixed
Hodge structures on the log de Rham cohomology groups Hq(Y, ωY/∗), we replace ωY/∗ by the
weak cohomological mixed Hodge complex K defined in [6, (5.4)]. Here we note that the complex
K carries a multiplicative structure which is compatible with the wedge product on ωY/∗. Then
our aim is, more precisely, to construct polarizations on Hq(Y,K) for all q. To this end, we
follow a way similar to the case of compact Kähler complex manifolds. First, we construct a
cup product on H∗(Y,K) by using the multiplicative structure on K. Second, we define a trace
morphism H2n(Y,K) −→ C. Third, we study the property of the cup product with the class of
an ample invertible sheaf in H2(Y,K). Finally, we prove a kind of positivity for the bilinear form
as a conclusion. The key ingredient for our argument is the comparison morphism ϕ : A −→ K,
where A denotes the cohomological mixed Hodge complex constructed by Steenbrink in [22,
Section 5] (cf. [21, Section 4]). By the fact that ϕ induces isomorphisms of mixed Hodge
structures between Hq(Y,A) and Hq(Y,K) for all q, we can apply the results by Guillén-Navarro
Aznar [11, (5.1)Théorème], or by Morihiko Saito [19, 4.2.5 Remarque] to prove the positivity.

This article is organized as follows: In Section 1, we fix the notation and the sign convention
used in this article. Section 2 treats the Čech complex of a co-cubical complex. We give the
definition of a product morphism for the Čech complexes of two co-cubical complexes. In Section
3, we study the residue morphisms for the log de Rham complex and for the Koszul complex of a
log deformation. Section 4 is devoted to the study of the Gysin morphism for a log deformation.
In Section 5, we first recall the definition of the complex K in [6] for the case of a log deformation.
We slightly modify the definition and the notation in [6]. Then we recall results of [6] in Theorem
5.9. Next, we study several properties of the Gysin morphism of the complex K for the later
use. Furthermore, we recall the definition of the complex A in Steenbrink [22] and in Fujisawa-
Nakayama [8]. Here we also modify the definition of A slightly. Theorem 5.21 restates the results
of [22] and of [8]. Then we construct the comparison morphism ϕ from A to K mentioned above.
We prove that the morphism ϕ induces isomorphisms between Hq(Y,A) and Hq(Y,K) for all q
in this section. In Section 6, the multiplicative structures on the complex K and on other
related complexes are studied. The multiplicative structure on K induces the cup product on
H∗(Y,K) mentioned above. We prove that the cup product on H∗(Y,K) satisfies the expected
properties for the weight filtration W and the Hodge filtration F . In Section 7, the trace
morphism Tr : H2n(Y,KC) −→ C mentioned above is defined by using the E2-degeneracy of the
spectral sequence Ep,qr (KC,W ). The cup product on H∗(Y,K) and the trace morphism induce
the bilinear form QK on H∗(Y,K). Combining all these together in Section 8, we prove the main
results of this article by applying the results on bigraded polarized Hodge-Lefschetz modules in
[11].

0.3. The results of this article have been already announced with few proofs in [7]. There we
restrict ourselves to the case of a semistable reduction over the unit disc for simplicity. In this
paper we will give the complete proofs for the results. Moreover, we modify some definitions
slightly and correct several mistakes in [7].

1. Preliminaries

In this section, we collect several definitions which will be used in this article constantly. We
follow [3, 1.3] and [16, Notation] for sign conventions. We recall some of them for the later use.

1.1. The cardinality of a finite set A is denoted by |A|.
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1.2. For the shift of an increasing filtration W , we use the notation by Deligne [5, Définition
(1,1,2), (1,1,3)]. Namely, we set

W [k]m = Wm−k

for every k,m. This notation is different from that used by Cattani-Kaplan-Schmid [2, p.475].
For the shift of a decreasing filtration F , we follow the standard notation, that is,

F [k]p = F p+k

for every k, p.

1.3. Let f : K −→ L be a morphism of complexes. The complex (C(f), d), called the mapping
cone of f , is defined by

C(f)p = Kp+1 ⊕ Lp

d(x, y) = (−dx, f(x) + dy) x ∈ Kp+1, y ∈ Lp

as in [12]. Two morphisms of complexes

α(f) : L −→ C(f)

β(f) : C(f) −→ K[1]

are defined by

α(f)(y) = (0, y) y ∈ Lp

β(f)(x, y) = −x x ∈ Kp+1, y ∈ Lp

for every integer p. (See e.g. [3, (1.3.3)], [16, Notation (4)].)
For every integer m, we set a morphism

ζm : C(f)[m]p −→ C(f [m])p

by ζm(x, y) = ((−1)mx, y) for an element (x, y) ∈ C(f)[m]p = Kp+m+1⊕Lp+m. It is easy to see
that this defines an isomorphism of complexes ζm : C(f)[m] −→ C(f [m]). Then the diagram

L[m]
α(f)[m]−−−−−→ C(f)[m]

β(f)[m]−−−−−→ K[m+ 1]∥∥∥ ζm

y y(−1)m id

L[m] −−−−−→
α(f [m])

C(f [m]) −−−−−→
β(f [m])

K[m+ 1]

(1.3.1)

is commutative.
Let

0 −−−−→ K
f−−−−→ L

g−−−−→ M −−−−→ 0 (1.3.2)

be an exact sequence of complexes, that is,

0 −−−−→ Kp f−−−−→ Lp
g−−−−→ Mp −−−−→ 0

is exact for every p. We define a morphism of complexes

δ(f, g) : C(f) −→M

by sending (x, y) ∈ C(f)p = Kp+1 ⊕ Lp to δ(f, g)(x, y) = g(y) ∈Mp. It is well known that this
morphism δ(f, g) is a quasi-isomorphism. Therefore the diagram

M
δ(f,g)←−−−− C(f)

β(f)−−−−→ K[1]

gives us a morphism

γ(f, g) : M −→ K[1] (1.3.3)
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in the derived category. We can easily check that the morphism

Hp(γ(f, g)) : Hp(M) −→ Hp+1(K)

induced by the morphism (1.3.3) coincides with the classical connecting homomorphism induced
by the short exact sequence (1.3.2).

Because we have a commutative diagram

M [m] ←−−−−−−
δ(f,g)[m]

C(f)[m] −−−−−→
β(f)[m]

K[m+ 1]∥∥∥ yζm y(−1)m id

M [m]
δ(f [m],g[m])←−−−−−−−− C(f [m])

β(f [m])−−−−−→ K[m+ 1]

by (1.3.1), we have the equality

γ(f, g)[m] = (−1)mγ(f [m], g[m]) (1.3.4)

for every m.

1.4. For two integers a, b, we identify two complexes K[a]⊗ L[b] and (K ⊗ L)[a+ b] as follows
(see [3, (1.3.6)]). The morphism

K[a]⊗ L[b] −→ (K ⊗ L)[a+ b] (1.4.1)

is given by

x⊗ y 7→ (−1)pbx⊗ y
on the component K[a]p ⊗ L[b]q = Kp+a ⊗ Lq+b. This gives us the identification expected. For
a morphism of complexes

f : K1 ⊗K2 −→ K3

the morphism of complexes

f [a, b] : K1[a]⊗K2[b] −→ K3[a+ b] (1.4.2)

is the composite of the identification (1.4.1) and the morphism

f [a+ b] : (K1 ⊗K2)[a+ b] −→ K3[a+ b]

for every a, b.

1.5. Let K be a complex equipped with an increasing filtration W . For an integer m, the exact
sequence

0 −−−−→ GrWm−1K −−−−→ WmK/Wm−2K −−−−→ GrWm K −−−−→ 0

induces the morphism

GrWm K −→ GrWm−1K[1]

in the derived category as (1.3.3). It is called the Gysin morphism of the filtered complex (K,W )
and denoted by γm(K,W ). By (1.3.4), we have

γm(K[l],W ) = (−1)lγm(K,W )[l] (1.5.1)

for every l.
The morphism

Hp+q(γ−p(K,W )) : Hp+q(GrW−pK) −→ Hp+q(GrW−p−1K[1]) = Hp+q+1(GrW−p−1K)

coincides with the morphism

d1 : Ep,q1 (K,W ) −→ Ep+1,q
1 (K,W )
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of the E1-terms of the spectral sequences associated to the filtered complex (K,W ) under the

identification Ep,q1 (K,W ) ' Hp+q(GrW−pK).

1.6. Let (K, d) be a complex equipped with an increasing filtration W and f : K −→ K[1] a
morphism of complexes satisfying the conditions f2 = 0 and f(WmK) ⊂ Wm−1K[1] for every
m. Since we can easily check (d+ f)2 = 0, we obtain a complex (K, d+ f) which is denoted by
K ′ for a while. The same W defines an increasing filtration on K ′. We have the identity

GrWm K = GrWm K ′

as complexes for every m. Moreover the morphism f induces a morphism of complexes

GrWm (f) : GrWm K −→ GrWm−1K[1]

for every m. The following Proposition is easy to check.

Proposition 1.7. In the situation above, we have

γm(K ′,W ) = γm(K,W ) + GrWm (f)

: GrWm K ′ = GrWm K −→ GrWm−1K[1] = GrWm−1K
′[1]

for every integer m.

1.8. Let K1,K2,K3 be complexes. Assume that a morphism of complexes

ϕ : K1 ⊗K2 −→ K3

is given. Then ϕ induces the morphism

Hp(K1)⊗Hq(K2) −→ Hp+q(K3)

for every p, q. This morphism is denoted by Hp,q(ϕ) in this article.
For the case where K1,K2,K3 carry increasing filtrations W , if the morphism ϕ satisfies the

condition
ϕ(WaK1 ⊗WbK2) ⊂Wa+bK3

for all integers a, b, then the morphism ϕ induces the morphisms

GrWa,b ϕ : GrWa K1 ⊗GrWb K2 −→ GrWa+bK3

for all a and b.

2. Čech complexes of co-cubical complexes

2.1. Let Λ be a non-empty set. For a positive integer n, Λn denotes the n-times product set
of Λ. We set

∏
Λ =

∐
n>0 Λn. We consider Λ as a subset of

∏
Λ. We use a symbol λ for an

element of
∏

Λ. For an element λ ∈ Λn+1, we set d(λ) = n.
An element λ ∈ Λk+1 is denoted by

λ = (λ(0), λ(1), . . . , λ(k)) ∈ Λk+1

more explicitly, and the subset

{λ(0), λ(1), . . . , λ(k)} ⊂ Λ

is denoted by λ. We note that |λ| ≤ d(λ) + 1 and that the equality holds if and only if all λ(i)’s
are distinct. We set

Λk+1,◦ = {λ ∈ Λk+1; |λ| = k + 1} ⊂ Λk+1

for k ≥ 0 and
∏◦

Λ =
∐
k≥0 Λk+1,◦ ⊂

∏
Λ.

For an element λ ∈ Λk+1, we set

λi = (λ(0), λ(1), . . . , λ(i− 1), λ(i+ 1), . . . , λ(k)) ∈ Λk (2.1.1)
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for i = 0, 1, . . . , k. If λ ∈ Λk+1,◦, then λi ∈ Λk,◦ for all i.
We define a map

hi : Λk+1 −→ Λi+1 (2.1.2)

for 0 ≤ i ≤ k by
hi(λ)(j) = λ(j) 0 ≤ j ≤ i

for λ ∈ Λk+1. Similarly, a map
ti : Λk+1 −→ Λk−i+1 (2.1.3)

for 0 ≤ i ≤ k by
ti(λ)(j) = λ(j + i) 0 ≤ j ≤ k − i

for λ ∈ Λk+1.
We trivially have

hi(Λ
k+1,◦) ⊂ Λi+1,◦

ti(Λ
k+1,◦) ⊂ Λk−i+1,◦

for all i, k.

2.2. For a finite subset λ of Λ, the free Z-module of rank |λ| generated by {eλ}λ∈λ is denoted

by Zλ, that is, we have

Zλ =
⊕
λ∈λ

Zeλ

by definition. By setting

ε(λ) =

|λ|∧
Zλ,

we obtain a free Z-module ε(λ) of rank 1. We note ε(∅) = Z by definition. There exists the
canonical isomorphism

ϑ(λ) : ε(λ)⊗ ε(λ) −→ Z (2.2.1)

which sends eλ1 ∧ eλ2 ∧ · · · ∧ eλk ⊗ eλ1 ∧ eλ2 ∧ · · · ∧ eλk to 1. For two finite subsets λ, µ of Λ with
λ ∩ µ = ∅, we define a morphism

χ(λ, µ) : ε(λ)⊗ ε(µ) −→ ε(λ ∪ µ) (2.2.2)

by χ(λ, µ)(v ⊗ w) = v ∧ w.

For λ ∈ Λk+1,◦, we set

eλ = eλ(0) ∧ eλ(1) ∧ · · · ∧ eλ(k) ∈ ε(λ),

which is a base of ε(λ) over Z. For a subset µ of Λ with λ ∩ µ = ∅, we define an isomorphism

eλ∧ : ε(µ) −→ ε(λ ∪ µ)

by sending v ∈ ε(µ) to eλ ∧ v ∈ ε(λ ∪ µ). In particular, we obtain an isomorphism

eλ∧ : Z −→ ε(λ) (2.2.3)

for the case of µ = ∅.

2.3. The set of all subsets of Λ is denoted by S(Λ). Moreover Sn(Λ) denotes the set of all subsets
λ ⊂ Λ with |λ| = n for n ≥ 0. For two subsets λ, µ with λ ⊂ µ, the inclusion λ ↪→ µ is denoted
by ιµ,λ.

The set S(Λ) admits an order by the inclusion of subsets. We denote by S(Λ) the category
associated to the ordered set S(Λ) as in [14, p.14]. The subset of S(Λ) consisting of all the
non-empty subsets of Λ is denoted by S+(Λ) and the category associated to the ordered set
S+(Λ) by S+(Λ).
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2.4. Let C be a category. A cubical object in C indexed by the category S(Λ) (resp. S+(Λ))
is a contravariant functor from the category S(Λ) (resp. S+(Λ)) to C. On the other hand, a
co-cubical object in C indexed by the category S(Λ) (resp. S+(Λ)) is a covariant functor from
the category S(Λ) (resp. S+(Λ)) to C. A morphism of (co-)cubical objects is a morphism of
functors as usual. We use terminology such as (co-)cubical module, (co-)cubical complex, and
so on, as in the obvious meaning.

2.5. Now we fix a commutative Q-algebra κ. Let A be the category of κ-modules, or the category
of the κ-sheaves on a topological space.

Let Λ be a non-empty set. For a co-cubical complex K in A indexed by the category S+(Λ),
we set

C(K)k,l =
∏

λ∈Λk+1,◦

K(λ)l

for integers k, l. An element f ∈ C(K)k,l is a collection

f = (fλ)λ∈Λk+1,◦ fλ ∈ K(λ)l

by definition. The morphism δ = δK : C(K)k,l −→ C(K)k+1,l is defined by

δ(f)λ =

k+1∑
i=0

(−1)iK(ιλ,λi)(fλi)

for f ∈ C(K)k,l and for λ ∈ Λk+2,◦ as usual. On the other hand, we define a morphism

∂ : C(K)k,l −→ C(K)k,l+1

by
∂(f)λ = dfλ

for λ ∈ Λk+1,◦. By setting

C(K)p =
⊕
k+l=p

C(K)k,l

d = δ + (−1)k∂

we obtain a complex (C(K), d) in A, which is simply denoted by C(K) for short. Here we follow
the sign convention in [17, p.24]. We call it the Čech complex of a co-cubical complex K. The
construction above is functorial in the usual sense.

2.6. Let (K,W ) be an increasingly filtered co-cubical complex in A indexed by S+(Λ). Then
increasing filtrations W and δW on the complex C(K) are defined by

Wm C(K)k,l =
∏

λ∈Λk+1,◦

WmK(λ)l

Wm C(K)p =
⊕
k+l=p

Wm C(K)k,l

(δW )m C(K)k,l =
∏

λ∈Λk+1,◦

Wm+kK(λ)l

(δW )m C(K)p =
⊕
k+l=p

(δW )m C(K)k,l

for every m. We easily see the equality

GrδWm C(K) =
⊕
k≥0

∏
λ∈Λk+1,◦

GrWm+kK(λ)[−k] (2.6.1)
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for every m.
For a decreasingly filtered co-cubical complex (K,F ) in A indexed by S+(Λ), we similarly

define decreasing filtrations F and δF on C(K). These constructions satisfy the functoriality in
the obvious meaning.

Lemma 2.7. We have

γm(C(K), δW ) =
⊕
k≥0

∏
λ∈Λk+1,◦

(−1)kγm+k(K(λ),W )[−k] + GrWm+k δ

for every m.

Proof. Applying Proposition 1.7 and the equality (1.5.1), we obtain the conclusion. �

2.8. Let K,L be two co-cubical complexes in A indexed by S+(Λ). A co-cubical complex K⊗L
is defined by

(K ⊗ L)(λ) = K(λ)⊗ L(λ)

for λ ∈ S+(Λ). For λ, µ ∈ S+(Λ) with λ ⊂ µ, the morphism

(K ⊗ L)(ιµ,λ) : (K ⊗ L)(λ) −→ (K ⊗ L)(µ)

is defined by (K ⊗ L)(ιµ,λ) = K(ιµ,λ) ⊗ L(ιµ,λ). For the case where K and L carry increasing

filtrations W ,

Wm(K ⊗ L)(λ) =
∑

a+b=m

WaK(λ)⊗WbL(λ)

defines a filtration W on K ⊗ L.
Now, we will define a morphism

τ : C(K)⊗ C(L) −→ C(K ⊗ L),

which is a straightforward generalization of the cup product on the singular cohomology groups
of a topological space in terms of the Čech cohomology.

Definition 2.9. We define a morphism

τk,l : C(K)k,p−k ⊗ C(L)l,q−l −→ C(K ⊗ L)k+l,p+q−k−l

by setting

τk,l(f ⊗ g)λ = K(ιλ,hk(λ))(fhk(λ))⊗ L(ιλ,tk(λ))(gtk(λ)) ∈ K(λ)p−k ⊗ L(λ)q−l

for f ∈ C(K)k,p−k, g ∈ C(L)l,q−l and for λ ∈ Λk+l+1,◦, where hk and tk are the maps defined in
(2.1.2) and in (2.1.3) respectively.

By setting

τ = τK,L =
∑
k,l≥0

(−1)(p−k)lτk,l

we obtain a morphism

τ : C(K)p ⊗ C(L)q −→ C(K ⊗ L)p+q

for all p, q.

The following lemmas can be checked by easy and direct computation.

Lemma 2.10. The morphism τ defines a morphism of complexes τ : C(K)⊗C(L) −→ C(K⊗L).
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Lemma 2.11. For three co-cubical complexes K1,K2,K3 in A indexed by S+(Λ), the diagram

C(K1)⊗ C(K2)⊗ C(K3)
τK1,K2

⊗id
−−−−−−−→ C(K1 ⊗K2)⊗ C(K3)

id⊗τK2,K3

y yτK1⊗K2,K3

C(K1)⊗ C(K2 ⊗K3) −−−−−−−→
τK1,K2⊗K3

C(K1 ⊗K2 ⊗K3)

is commutative.

Lemma 2.12. Let (K,W ), (L,W ) be co-cubical filtered complexes. Then the morphism τ above
satisfies

τ(Wa C(K)⊗Wb C(L)) ⊂Wa+b C(K ⊗ L)

τ((δW )a C(K)⊗ (δW )b C(L)) ⊂ (δW )a+b C(K ⊗ L)

for all a, b. We have the same formulas for decreasing filtrations.

3. Residue morphisms

In this section, we first fix the notation for log deformations. Then we give the definition of
the residue morphism in our case, and prove several results on it. In the last part of this section,
we study the residue morphism for the Koszul complexes of a log deformation.

3.1. Let Y −→ ∗ be a log deformation (for the definition, see [8, Definition 2.15], [22, Definition
(3,8)]). We assume that all the irreducible components of the log deformation Y are smooth as in
[8]. The log structure on Y is denoted by MY . The morphism of monoid sheaves NY −→MY is
induced by the morphism of log complex analytic spaces Y −→ ∗. The image of 1 ∈ N = Γ(∗,N)
by the morphism above is denoted by t ∈ Γ(Y,MY ).

3.2. We describe the irreducible decomposition of Y by Y =
⋃
λ∈Λ Yλ. We set

Yλ =
⋂
λ∈λ

Yλ

for λ ∈ S+(Λ). We set Y∅ = Y . For λ, µ ∈ S(Λ) with λ ⊂ µ, we have the canonical closed
immersion

aλ,µ : Yµ −→ Yλ (3.2.1)

which satisfies the natural functorial property with respect to λ and µ trivially. The morphism
a∅,λ : Yλ −→ Y is denoted by aλ for short. We omit the symbol (aλ)∗ and (aλ,µ)∗ for complexes

of sheaves on Y and Yλ as usual. Then we have

MY /O∗Y =
⊕
λ∈Λ

NYλ (3.2.2)

by definition.
For λ ∈ S+(Λ), the induced log structure a∗λMY is simply denoted by MYλ . Unless otherwise

mentioned, Yλ is considered as a log complex manifold with the log structure MYλ . The log de
Rham complex of Yλ is denoted by ωYλ . The closed immersion aλ,µ in (3.2.1) is a morphism

of log complex analytic spaces for λ, µ ∈ S(Λ) with λ ⊂ µ. Thus the data {Yλ}λ∈S+(Λ) form a

cubical log complex manifold indexed by the category S+(Λ), denoted by Y•.
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We have the morphism a−1
λ MY −→ MYλ of monoid sheaves. The image of t ∈ Γ(Y,MY ) by

the morphism above is denoted by the same letter t in Γ(Yλ,MYλ). We have

MYλ/O∗Yλ = a−1
λ (MY /O∗Y )

= a−1
λ (
⊕
µ∈Λ

NYµ) =
⊕
µ∈Λ

NYλ∩Yµ =
⊕
µ∈Λ

NYλ∪{µ} ,

by (3.2.2). We have the canonical projection

redYλ : MYλ −→MYλ/O∗Yλ =
⊕
µ∈Λ

NYλ∪{µ}

for λ ∈ S(Λ).
For σ ∈ S(Λ), the monoid subsheaf

M
σ
Yλ

= red−1
Yλ

(
⊕
µ∈σ

NYλ∪{µ})

of MYλ equipped with the restriction of the structure morphism MYλ −→ OYλ defines a log

structure on Yλ. The complex analytic space Yλ equipped with the log structure M
σ
Yλ

is denoted

by Y
σ
λ . According to this definition, MYλ coincides with MΛ

Yλ
, and Yλ with Y Λ

λ . For an element

λ ∈ Λ, we use the notation Mλ
Yλ
, Y λλ instead of M

{λ}
Yλ

, Y
{λ}
λ for simplicity. The log de Rham

complex of Y
σ
λ is denoted by ωY σλ , which is a subcomplex of ωYλ in the trivial way. For σ, τ ∈ S(Λ)

with σ ⊂ τ , we have M
σ
Yλ
⊂Mτ

Yλ
, and the inclusion ωY σλ ⊂ ωY τλ as subcomplexes of ωYλ .

3.3. For σ ∈ S(Λ), we define an increasing filtration W (σ) on ωYλ by

W (σ)mω
p
Yλ

= Image(ωmYλ ⊗OYλ ω
p−m
Y

Λ\σ
λ

−→ ωpYλ)

for every non-negative integer m. The filtration W (Λ) is denoted by W for short. The morphism
m∧

dlog :

m∧
Mgp
Yλ
−→ ωmYλ

induces a morphism
m∧
Mgp
Yλ
⊗Z ω

p−m
Y

Λ\σ
λ

−→W (σ)mω
p
Yλ

for every p. By composing the morphism above and the projection

W (σ)mω
p
Yλ
−→ GrW (σ)

m ωpYλ ,

the morphism
m∧
Mgp
Yλ
⊗Z ω

p−m
Y

Λ\σ
λ

−→ GrW (σ)
m ωpYλ

is obtained. We can easily see that the morphism above factors through the surjection
m∧
Mgp
Yλ
⊗Z ω

p−m
Y

Λ\σ
λ

−→
m∧

(Mgp
Yλ
/(M

Λ\σ
Yλ

)gp)⊗Z ω
p−m
Y

Λ\σ
λ∪σ

by the definition of W (σ). If m = |σ|, we obtain a morphism

ε(σ)⊗Z ω
p−m
Y

Λ\σ
λ∪σ
−→ GrW (σ)

m ωpYλ (3.3.1)

by using
∧m

(Mgp
Yλ
/(M

Λ\σ
Yλ

)gp) = ε(σ).

3.4. We first describe the local case for the later use. So we assume the following:
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(3.4.1) Y = {x1x2 · · ·xr = 0} in the polydisc ∆n with coordinate functions x1, x2, . . . , xn.

(3.4.2) Λ = {1, 2, . . . , r} and Yλ = {xλ = 0} for λ ∈ Λ.

(3.4.3) t = x1x2 · · ·xr =
∏r
i=1 xi.

Let σ = {σ1, σ2, . . . , σm} be an element of Sm(Λ). For a local section ω of ωp−m
Y

Λ\σ
λ∪σ

, the morphism

(3.3.1) sends
eσ1
∧ eσ2

∧ · · · ∧ eσm ⊗ ω
to the local section

dlog xσ1
∧ dlog xσ2

∧ · · · ∧ dlog xσm ∧ ω̃
where ω̃ is a local section of ωp−m

Y
Λ\σ
λ

whose restriction to Y
Λ\σ
λ∪σ coincides with ω.

Proposition 3.5. The morphism (3.3.1) induces an isomorphism of complexes

ε(σ)⊗Z ωY Λ\σ
λ∪σ

[−m] −→ GrW (σ)
m ωYλ (3.5.1)

for every σ ∈ Sm(Λ).

Proof. Same as [4, Proposition 3.6]. �

Definition 3.6. For the case of |σ| = m, the morphism

Res
σ
Yλ

: ωYλ −→ ε(σ)⊗Z ωYλ∪σ [−m]

is defined as the composite of the three morphisms, the projection

ωYλ = W (σ)mωYλ −→ GrW (σ)
m ωYλ ,

the inverse of the isomorphism (3.5.1), and the morphism

ε(σ)⊗Z ωY Λ\σ
λ∪σ

[−m] −→ ε(σ)⊗Z ωYλ∪σ [−m]

induced from the inclusion ω
Y

Λ\σ
λ∪σ
⊂ ωYλ∪σ . Note that Res∅Yλ = id.

Moreover we set

ResmYλ =
∑

σ∈Sm(Λ)

Res
σ
Yλ

: ωYλ −→
⊕

σ∈Sm(Λ)

ε(σ)⊗Z ωYλ∪σ [−m]

for every non-negative integer m. Here we remark that the definition of the residue morphisms
above is different from that by Deligne in [5, (3.1.5.2)].

Lemma 3.7. In the situation above, the morphism ResmYλ induces an isomorphism

GrWm ωYλ
'−→

⊕
σ∈Sm(Λ)

ε(σ)⊗Z ΩYλ∪σ [−m] (3.7.1)

for every m.

Proof. Same as [4, Proposition 3.6]. �

3.8. A global section dlog t of ω1
Yλ

is obtained from t ∈ Γ(Yλ,MYλ). A morphism of complexes

dlog t∧ : ωYλ −→ ωYλ [1] (3.8.1)

is defined by sending a local section ω ∈ ωpYλ to dlog t∧ω ∈ ωp+1
Yλ

. We can easily see the property

(dlog t∧)(WmωYλ) ⊂Wm+1ωYλ [1] for every m. Therefore, for all m, the morphism dlog t∧ above
induces a morphism of complexes

dlog t∧ : GrWm ωYλ −→ GrWm+1 ωYλ [1]. (3.8.2)
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Lemma 3.9. We have

Res
σ
Yλ

[1](dlog t∧)

= (−1)m(id⊗(dlog t∧)[−m]) Res
σ
Yλ

+
∑
λ∈σ

((eλ∧)⊗ a∗λ∪(σ\{λ}),λ∪σ) Res
σ\{λ}
Yλ

: ωYλ −→ ε(σ)⊗Z ωYλ∪σ [1−m]

for σ ∈ Sm(Λ).

Proof. We may assume the conditions (3.4.1)–(3.4.3) in 3.4. Now we take a subset σ = {σ1, σ2, . . . , σm}
of Λ. For a local section ω of ωYλ , we write

ω = dlog xσ1 ∧ dlog xσ2 ∧ · · · ∧ dlog xσm ∧ η

+

m∑
i=1

dlog xσ1 ∧ · · · ∧ /dlog xσi ∧ · · · ∧ dlog xσm ∧ ηi + η′

where /dlog xσi means to omit dlog xσi and where η, ηi ∈ W (σ)0ωYλ , η
′ ∈ W (σ)m−2ωYλ . Then

we have

dlog t ∧ ω = (−1)m
∑
λ∈Λ\σ

dlog xσ1
∧ · · · ∧ dlog xσm ∧ dlog xλ ∧ η

+

m∑
i=1

dlog xσi ∧ dlog xσ1 ∧ · · · ∧ /dlog xσi ∧ · · · ∧ dlog xσm ∧ ηi

+
∑
λ∈Λ\σ

dlog xλ ∧ dlog xσ0 ∧ · · · ∧ /dlog xσi ∧ · · · ∧ dlog xσm ∧ ηi

+ dlog t ∧ η′,
and then

Res
σ
Yλ

(dlog t ∧ ω) = (−1)meσ1
∧ · · · ∧ eσm ⊗

∑
λ∈Λ\σ

dlog xλ ∧ η

+

m∑
i=1

eσi ∧ eσ1
∧ · · · ∧ /eσi ∧ · · · ∧ eσm ⊗ ηi,

Res
σ
Yλ

(ω) = eσ1
∧ · · · ∧ eσm ⊗ η

by definition. On the other hand,

Res
σ\{σi}
Yλ

(ω) = eσ1
∧ · · · ∧ /eσi ∧ · · · ∧ eσm ⊗ ((−1)m−i dlog xσi ∧ η + ηi)

holds for i = 1, 2, . . . ,m. Therefore

Res
σ
Yλ

(dlog t ∧ ω)

= (−1)meσ1
∧ · · · ∧ eσm ⊗

∑
λ∈Λ\σ

dlog xλ ∧ η

+

m∑
i=1

(eσi ∧ ⊗ id) Res
σ\{σi}
Yλ

(ω) + (−1)meσ1
∧ · · · ∧ eσm ⊗

m∑
i=1

dlog xσi ∧ η

= (−1)m(id⊗(dlog t∧)[−m]) Res
σ
Yλ

(ω)

+
∑
ν∈σ

((eν∧)⊗ a∗λ∪(σ\{ν}),λ∪σ · Res
σ\{ν}
Yλ

(ω)
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is obtained. �

Corollary 3.10. The morphism (3.8.2) is identified with the morphism⊕
σ∈Sm(Λ)

∑
µ∈Λ\σ

(eµ∧)⊗ (aλ∪σ,λ∪σ∪{µ})
∗

:
⊕

σ∈Sm(Λ)

ε(σ)⊗Z ΩYλ∪σ [−m] −→
⊕

τ∈Sm+1(Λ)

ε(τ)⊗Z ΩYλ∪τ [−m]

under the identification (3.7.1).

3.11. We recall the definition of the Koszul complexes. Moreover, we will define the residue
morphism of the Koszul complexes of a log deformation, and prove several results on it. The
main reference is [6, Section 1].

For σ ∈ S(Λ), a Q-sheaf KosYλ(M
σ
Yλ

;n)p is defined as in [6, (2.3)] by

KosYλ(M
σ
Yλ

;n)p = Γn−p(OYλ)⊗Z

p∧
(M

σ
Yλ

)gp (3.11.1)

for non-negative integers n, p with p ≤ n, where the divided power envelope Γn−p(OYλ) is taken
over the base field Q. By setting

d(f
[n1]
1 f

[n2]
2 · · · f [nk]

k ⊗m) =

k∑
i=1

f
[n1]
1 · · · f [ni−1]

i · · · f [nk]
k ⊗ exp

(
2π
√
−1fi

)
∧m

for integers n1, n2, . . . , nk with n1 + n2 + · · ·+ nk = n− p, the differential

d : KosYλ(M
σ
Yλ

;n)p −→ KosYλ(M
σ
Yλ

;n)p+1

is defined. The global section 1 of OYλ gives us the morphism

KosYλ(M
σ
Yλ

;n) −→ KosYλ(M
σ
Yλ

;n+ 1) (3.11.2)

by sending f ⊗m to 1[1]f ⊗m for f ∈ Γn−p(OYλ) and for m ∈
∧p

(M
σ
Yλ

)gp. Thus we obtain an

inductive system

· · · −−−−→ KosYλ(M
σ
Yλ

;n) −−−−→ KosYλ(M
σ
Yλ

;n+ 1) −−−−→ · · · ,

and its limit

KosYλ(M
σ
Yλ

) = lim−→
n

KosYλ(M
σ
Yλ

;n)

as in [6, Definition 1.8]. By setting

ψ(Yλ,MYλ
)(f

[n1]
1 · · · f [nk]

k ⊗m) =
(
2π
√
−1
)−p

(n1! · · ·nk!)−1fn1
1 · · · f

nk
k

( p∧
dlog

)
(m),

a morphism of complexes

ψ(Yλ,M
σ
Yλ

) : KosYλ(M
σ
Yλ

;n) −→ ωY σλ

is defined for every n. These data ψ(Yλ,M
σ
Yλ

) for all n induce a morphism of complexes

ψ(Yλ,M
σ
Yλ

) : KosYλ(M
σ
Yλ

) −→ ωY σλ (3.11.3)

as in [6, (2.4)].

For the case of σ = ∅, the log structure M∅Yλ is nothing but the trivial log structure O∗Yλ . Then

the morphism QYλ −→ Γn(OYλ) = KosYλ(O∗Yλ ;n)0 which sends f ∈ Q to (n!f)1[n] ∈ Γn(OYλ)
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induces a morphism of complexes QYλ −→ KosYλ(O∗Yλ). Moreover these morphisms for all n are

compatible with the morphisms (3.11.2). Therefore a morphism of complexes

QYλ −→ KosYλ(O∗Yλ) (3.11.4)

is obtained.

Lemma 3.12. The morphism (3.11.4) is a quasi-isomorphism, which fits in the commutative
diagram

QYλ −−−−→ KosYλ(O∗Yλ)y yψ(Yλ,O
∗
Yλ

)

CYλ −−−−→ ΩYλ ,

where the left vertical arrow is the canonical inclusion QYλ −→ CYλ and the bottom horizontal
arrow is the usual morphism induced by the canonical inclusion CYλ −→ OYλ .

Proof. Easy by definition. �

3.13. For the case of σ = Λ, the global section t of MYλ defines a morphism of complexes

KosYλ(MYλ ;n) −→ KosYλ(MYλ ;n+ 1)[1]

by sending f ⊗m to f ⊗ t ∧m. This induces a morphism of complexes

t∧ : KosYλ(MYλ) −→ KosYλ(MYλ)[1] (3.13.1)

as in [6, (1.11)]. Direct computation shows that the diagram

KosYλ(MYλ)
t∧−−−−→ KosYλ(MYλ)[1]

ψ(Yλ,MYλ
)

y y(2π√−1
)
ψ(Yλ,MYλ

)

ωYλ −−−−→
dlog t∧

ωYλ [1]

(3.13.2)

is commutative.

3.14. For λ, µ ∈ S(Λ) with λ ⊂ µ, the inclusion aλ,µ : Y
σ
µ −→ Y

σ
λ induces morphisms of

complexes
a∗λ,µ : a−1

λ,µ KosYλ(M
σ
Yλ

) −→ KosYµ(M
σ
Yµ

) (3.14.1)

and
KosYλ(M

σ
Yλ

) −→ KosYµ(M
σ
Yµ

) = (aλ,µ)∗KosYµ(M
σ
Yµ

)

in the trivial way. These two morphisms are denoted by the same letter a∗λ,µ, by abuse of the

notation.

3.15. For σ ∈ S(Λ), the subsheaf (M
Λ\σ
Yλ

)gp of Mgp
Yλ

yields the filtration W ((M
Λ\σ
Yλ

)gp) on

KosYλ(MYλ) as defined in [6, Definition 1.8]. This filtration on KosYλ(MYλ) is denoted by W (σ)
in this article. The filtration W (Λ) is denoted by W . The morphism ψ(Yλ,MYλ

) above preserves

the filtration W (σ) for any subset σ of Λ. As proved in [6, Proposition 1.10], we have an
isomorphism of complexes

GrW (σ)
m KosYλ(MYλ) ' ε(σ)⊗Z a

−1
λ,λ∪σ KosYλ(M

Λ\σ
Yλ

)[−m] (3.15.1)

for every integer m.
We have the inclusion

a−1
λ,λ∪σ KosYλ(M

Λ\σ
Yλ

) −→ a−1
λ,λ∪σ KosYλ(MYλ)
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induced by the inclusion M
Λ\σ
Yλ
⊂MYλ . Therefore we obtain the morphism

ε(σ)⊗Z a
−1
λ,λ∪σ KosYλ(M

Λ\σ
Yλ

)[−m] −→ ε(σ)⊗Z a
−1
λ,λ∪σ KosYλ(MYλ)[−m] (3.15.2)

by tensoring the identity and by shifting.
On the other hand, we have the canonical morphism (3.14.1)

a∗λ,λ∪σ : a−1
λ,λ∪σ KosYλ(MYλ) −→ KosYλ∪σ (MYλ∪σ )

for λ, σ ∈ S(Λ). Thus the morphism

id⊗a∗λ,λ∪σ[−m] : ε(σ)⊗Z a
−1
λ,λ∪σ KosYλ(MYλ)[−m]

−→ ε(σ)⊗Z KosYλ∪σ (MYλ∪σ )[−m]
(3.15.3)

is obtained.

Definition 3.16. For σ ∈ Sm(Λ), the equality

W (σ)m KosYλ(MYλ) = KosYλ(MYλ)

can be easily seen. Then the composite of four morphisms, the projection

KosYλ(MYλ) = W (σ)m KosYλ(MYλ) −→ GrW (σ)
m KosYλ(MYλ),

the isomorphism (3.15.1), the morphisms (3.15.2) and (3.15.3), is denoted by

Res
σ
Yλ

: KosYλ(MYλ) −→ ε(σ)⊗Z KosYλ∪σ (MYλ∪σ )[−m]

by abuse of the language. Moreover we set

ResmYλ =
∑

σ∈Sm(Λ)

Res
σ
Yλ

: KosYλ(MYλ) −→
⊕

σ∈Sm(Λ)

ε(σ)⊗Z KosYλ∪σ (MYλ∪σ )[−m]

as in Definition 3.6 again.

Lemma 3.17. The morphism ResmYλ induces a quasi-isomorphism

ResmYλ : GrWm KosYλ(MYλ) −→
⊕

σ∈Sm(Λ)

ε(σ)⊗Z KosYλ∪σ (O∗Yλ∪σ )[−m] (3.17.1)

for every m. In particular, we have an isomorphism

GrWm KosYλ(MYλ) −→
⊕

σ∈Sm(Λ)

ε(σ)⊗Z QYλ∪σ [−m] (3.17.2)

in the derived category for every m.

Proof. We have an isomorphism

GrWm KosYλ(MYλ) −→
⊕

σ∈Sm(Λ)

ε(σ)⊗Z a
−1
λ,λ∪σ KosYλ(O∗Yλ)[−m]

as in the case of ωYλ . We can check that the canonical morphism

a−1
λ,λ∪σ KosYλ(O∗Yλ) −→ KosYλ∪σ (O∗Yλ∪σ )

is a quasi-isomorphism. Thus the morphism (3.17.1) is a quasi-isomorphism. Combining with
the quasi-isomorphism (3.11.4) for λ∪ σ, we obtain the isomorphism (3.17.2). See [6, Section 1]
for the detail. �
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Lemma 3.18. For a non-negative integer m, the diagram

KosYλ(MYλ)
Res

σ
Yλ−−−−→ ε(σ)⊗Z KosYλ∪σ (MYλ∪σ )[−m]

ψ(Yλ,MYλ
)

y yid⊗
(

2π
√
−1
)−m

ψ(Yλ∪σ,MYλ∪σ
)[−m]

ωYλ −−−−→
Res

σ
Yλ

ε(σ)⊗Z ωYλ∪σ [−m]

is commutative for every σ ∈ Sm(Λ).

Proof. Easy by definition. �

Lemma 3.19. We have

Res
σ
Yλ

[1](t∧)

= (−1)m(id⊗(t∧)[−m]) Res
σ
Yλ

+
∑
ν∈σ

((eν∧)⊗ a∗λ∪(σ\{ν}),λ∪σ) Res
σ\{ν}
Yλ

: KosYλ(MYλ) −→ ε(σ)⊗Z KosYλ∪σ (MYλ∪σ )[1−m]

for σ ∈ Sm(Λ).

Proof. Similar to the case of the log de Rham complex ωYλ in Lemma 3.9. �

4. Gysin morphisms

In this section, we fix the notation on the so called “Gysin map”. Because the signs of objects
in the cohomology groups are crucial for our computation, we start with the well-known objects
and fix the signs explicitly.

4.1. Let X be a complex analytic space equipped with a log structure MX . For the log de Rham
complex ωX of a log complex analytic space X, we set an increasing filtration W by

Wmω
p
X = Image(ωmX ⊗OX Ωp−mX −→ ωpX)

as in 3.3. Then we have a morphism

γm(ωX ,W ) : GrWm ωX −→ GrWm−1 ωX [1]

in the derived category as in 1.5. We use the symbol γm(X,MX) instead of γm(ωX ,W ). We
sometimes drop the subscript m, if there is no danger of confusion.

4.2. First, we recall the simplest example. Let X be a complex manifold and D a smooth
hypersurface in X. The log structure MX(D) associated to the divisor D is equipped to X. In
this case, the log de Rham complex ωX is nothing but ΩX(logD), and the increasing filtration
W coincides with the usual weight filtration on ΩX(logD) in [4]. Then we have

GrW0 ΩX(logD) = W0ΩX(logD) = ΩX

by definition. Moreover we have W1ΩX(logD) = ΩX(logD) because D is smooth. We have the
residue isomorphism of complexes

ResDX : GrW1 ΩX(logD)
'−→ ΩD[−1],

by which we identify GrW1 ΩX(logD) and ΩD[−1]. Thus we obtain the morphism

γ(X,D) = γ(X,MX(D)) : ΩD[−1] −→ ΩX [1]

in the derived category.
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Proposition 4.3. In addition to the situation above, we assume that X is compact. Then we
have the equality ∫

X

Hp+1(X, γ(X,D))(a) ∪ b = −
(
2π
√
−1
) ∫

D

a ∪ (b|D)

for any a ∈ Hp(D,ΩD) and b ∈ H2 dimX−2−p(X,ΩX).

Proof. See Griffiths-Schmid [10, §2 (b)]. �

4.4. Let Y −→ ∗ be a log deformation. As defined in 4.1, we have the morphism

γm(Yλ,M
σ
Yλ

) : GrWm ωY σλ −→ GrWm−1 ωY σλ [1]

in the derived category for λ, σ ∈ S(Λ). In particular, the morphism

γ(Yλ,M
λ
Yλ

) : GrW1 ωY λλ −→ GrW0 ωY λλ [1] = ΩYλ [1]

is obtained for λ ∈ Λ. By the identification

ΩYλ∪{λ} [−1] ' ε(λ)⊗Z ΩYλ∪{λ} [−1] ' GrW1 ωY λλ

we obtain a morphism

γY λλ : ΩYλ∪{λ} [−1] −→ ΩYλ [1]

in the derived category. We have

γY λλ = γ(Yλ, Yλ∪{λ}) (4.4.1)

for λ /∈ λ.
The following proposition is very similar to [16, Proposition 4.3, Proposition 4.5]. However, we

restate it for the completeness, because our definition of the residue isomorphism are different
from Nakkajima’s. Here we only give a sketch of the proof because it is almost the same as
Proposition 4.5 in [16].

Proposition 4.5. For a positive integer m, the morphism

γm(Yλ,MYλ) : GrWm ωYλ −→ GrWm−1 ωYλ [1]

is identified with⊕
σ∈Sm(Λ)

∑
ν∈σ

(eν∧)−1 ⊗ γY ν
λ∪(σ\{ν})

[1−m]

:
⊕

σ∈Sm(Λ)

ε(σ)⊗Z ΩYλ∪σ [−m] −→
⊕

τ∈Sm−1(Λ)

ε(τ)⊗Z ΩYλ∪τ [2−m]

under the isomorphism (3.7.1), where eν∧ denotes the isomorphism ε(σ\{ν}) −→ ε(σ) in (2.2.3).

Proof. The canonical inclusion ωY σλ ↪→ ωYλ induces the commutative diagram

0 −−−−→ GrWm−1 ωY σλ −−−−→ WmωY σλ /Wm−2ωY σλ −−−−→ GrWm ωY σλ −−−−→ 0y y y
0 −−−−→ GrWm−1 ωYλ −−−−→ WmωYλ/Wm−2ωYλ −−−−→ GrWm ωYλ −−−−→ 0
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with exact rows for σ ∈ Sm(Λ). Thus the restriction of γm(Yλ,MYλ) on the direct summand

ε(σ)⊗Z ΩYλ∪σ [−m] under the identification (3.7.1) coincides with γm(Yλ,M
σ
Yλ

) under the iden-

tification GrWm ωY σλ ' ε(σ) ⊗Z ΩYλ∪σ [−m]. For τ ∈ Sm−1(σ), Res
τ
Yλ

induces the commutative

diagram

0 −−−−−→ GrWm−1 ωY
σ
λ

−−−−−→ WmωY
σ
λ
/Wm−2ωY

σ
λ
−−−−−→ GrWm ωY

σ
λ

−−−−−→ 0y y y
0 −−−−−→ ε(τ)⊗Z ΩYλ∪σ [1−m] −−−−−→ ε(τ)⊗Z ωY ν

λ∪τ
[1−m] −−−−−→ ε(τ)⊗Z ΩYλ∪σ [−m] −−−−−→ 0

with exact rows, where σ \ τ = {ν}. Then we have

Res
τ
Yλ

[1]γm(Yλ,M
σ
Yλ

) =(−1)m−1χ(τ , {ν})−1 ⊗ γY νλ∪τ
: ε(σ)⊗Z ΩYλ∪σ [−m] −→ ε(τ)⊗Z ΩYλ∪τ [2−m]

by using (1.5.1). Because of χ(τ , {ν}) = (−1)m−1eν∧ under the identification ε(ν) ' Z, the
conclusion is obtained. �

5. Comparison between A and K

In this section, we first recall results in [6] and adjust them to the case of a log deformation.
The definition and the notation are slightly changed from that in [6]. In addition to this change,
the method in Section 2 is used instead of the simplicial method in [6] because it can work
without fixing the total order on the index set. After recalling the results in Steenbrink [22],
Fujisawa-Nakayama [8] briefly, we construct a morphism from Steenbrink’s cohomological mixed
Hodge complex to the complex in [6].

5.1. Let Y −→ ∗ be a log deformation. We assume that

(5.1.1) Y has finitely many irreducible components

in the remainder of this article. Then the index set Λ of the irreducible components of Y is a
finite set. This assumption does not affect to our main results because we are interested only in
the case where Y is compact.

5.2. Fix an element λ ∈ S(Λ). A morphism

∇ : C[u]⊗C ω
p
Yλ
−→ C[u]⊗C ω

p+1
Yλ

is defined by

∇ = id⊗d+
(
2π
√
−1
)−1 d

du
⊗ dlog t∧

for a non-negative integer p, where dlog t∧ is the morphism (3.8.1). We can easily see the equality
∇2 = 0. Thus we obtain a complex of C-sheaves on Yλ, which is denoted by (C[u]⊗C ωYλ ,∇) or
simply by C[u]⊗C ωYλ . A morphism of complexes

ωYλ −→ C[u]⊗C ωYλ (5.2.1)

is induced by the natural inclusion C −→ C[u]. We consider ωYλ as a subcomplex of C[u]⊗C ωYλ
by the inclusion above.

By using the identity

C[u]⊗C ωYλ =
⊕
r≥0

Cur ⊗C ωYλ ,
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the weight filtration W and the Hodge filtration F on C[u]⊗C ωYλ are defined by

Wm(C[u]⊗C ωYλ) =
⊕
r≥0

Cur ⊗C Wm−2rωYλ

F p(C[u]⊗C ωYλ) =
⊕
r≥0

Cur ⊗C F
p−rωYλ

for every m, p, where F on ωYλ denotes the stupid filtration as in [5, (1.4.6)]. It can be easily
seen that the filtrations W and F are preserved by ∇. Thus we obtain a bifiltered complex
(C[u]⊗C ωYλ ,W, F ).

By setting

πC,λ,r(P (u)⊗ ω) =
drP

dur
(0)⊗ ω,

a morphism

πC,λ,r : C[u]⊗C ω
p
Yλ
−→ ωpYλ

is obtained for every non-negative integer r. Note that πC,λ,r does not define a morphism of
complexes. We have

πC,λ,r(Wm(C[u]⊗C ω
p
Yλ

)) ⊂Wm−2rω
p
Yλ

πC,λ,r(F
q(C[u]⊗C ω

p
Yλ

)) ⊂ F q−rωpYλ
for every m, q. It is easy to see that

GrWm πC,λ,r : (GrWm (C[u]⊗C ωYλ), F ) −→ (GrWm−2r ωYλ , F [−r])

defines a morphism of filtered complexes, although the morphism πC,λ,r is not a morphism of
complexes. Moreover, the morphism of filtered complexes

πλ/∗ : (C[u]⊗C ωYλ , F ) −→ (ωYλ/∗, F )

is given by composing the morphism πC,λ,0 and the canonical projection ωpYλ −→ ωpYλ/∗.

5.3. We have a complex

Q[u]⊗Q KosYλ(MYλ)

with the differential

∇ = id⊗d+
d

du
⊗ t∧,

where t∧ is the morphism defined in (3.13.1). Moreover, an increasing filtration W on Q[u]⊗Q
KosYλ(MYλ) is defined by

Wm(Q[u]⊗Q KosYλ(MYλ)) =
⊕
r≥0

Qur ⊗Q Wm−2r KosYλ(MYλ)

for every m.
We define a morphism

πQ,λ : Q[u]⊗Q KosYλ(MYλ)p −→ KosYλ(MYλ)p

by substituting 0 for the variable u as in the case of πC,λ,0. Note that πQ,λ is not a morphism of
complexes. It is clear that πQ,λ preserves the filtration W and induces a morphism of complexes

GrWm πQ,λ : GrWm (Q[u]⊗Q KosYλ(MYλ)) −→ GrWm KosYλ(MYλ)

for every m.



POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES 165

5.4. We have the morphism of complexes

ψλ,0 = ψ(Yλ,MYλ
) : KosYλ(MYλ) −→ ωYλ

defined in (3.11.3).
Tensoring with the canonical inclusion Q[u] −→ C[u] with the morphism ψ(Yλ,MYλ

), we obtain

a morphism
ψλ : Q[u]⊗Q KosYλ(MYλ) −→ C[u]⊗C ωYλ

for every λ. The commutative diagram (3.13.2) tells us that the morphism ψλ is a morphism of
complexes.

5.5. The construction in 5.1–5.4 is functorial with respect to the morphisms induced from the
canonical inclusion Yµ ⊂ Yλ for λ ⊂ µ. Thus we obtain the corresponding co-cubical objects

over the cubical log complex manifold Y•.
Then we obtain the filtered co-cubical complexes of Q-sheaves

(KosY•(MY•),W ), (Q[u]⊗Q KosY•(MY•),W ),

the (bi)filtered co-cubical complexes of C-sheaves

(ωY•/∗, F ), (ωY• ,W, F ), (C[u]⊗C ωY• ,W, F )

and the morphisms

ψ•,0 : (KosY•(MY•),W ) −→ (ωY• ,W )

ψ• : (Q[u]⊗Q KosY•(MY•),W ) −→ (C[u]⊗C ωY• ,W )

πQ,• : (Q[u]⊗Q KosY•(MY•)
p,W ) −→ (KosY•(MY•)

p,W )

πC,•,r : (C[u]⊗C ω
p
Y •,W, F ) −→ (ωpY• ,W [2r], F [−r])

π•/∗ : (C[u]⊗C ωY• , F ) −→ (ωY•/∗, F )

on Y•. So we obtain the filtered complexes of Q-sheaves

(C(KosY•(MY•)), δW ), (C(Q[u]⊗Q KosY•(MY•)), δW )

and the (bi)filtered complexes of C-sheaves

(C(ωY•/∗), F ), (C(ωY•), δW,F ), (C(C[u]⊗C ωY•), δW,F ),

on Y as in 2.5 and 2.6. We set

(KQ,W ) = (C(Q[u]⊗Q KosY•(MY•)), δW )

(KC,W, F ) = (C(C[u]⊗C ωY•), δW,F )

for short. Moreover the morphisms of filtered complexes

ψ0 = C(ψ•,0) : (C(KosY•(MY•)), δW ) −→ (C(ωY•), δW )

ψ = C(ψ•) : (KQ,W ) −→ (KC,W )

π/∗ = C(π•/∗) : (KC, F ) −→ (C(ωY•/∗), F )

are obtained. Moreover, C(ωY•) is considered as a subcomplex of KC by the inclusion (5.2.1).

5.6. The morphisms πQ,• and πC,•,r induce morphisms

πQ = C(πQ,•) : (Kp
Q,W ) −→ (C(KosY•(MY•))

p, δW )

πC,r = C(πC,•,r) : (Kp
C,W, F ) −→ (C(ωY•)p, δW [2r], F [−r])

for every p, which induce a morphism of complexes

GrWm πQ : GrWm KQ −→ GrδWm C(KosY•(MY•))
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and a morphism of filtered complexes

GrWm πC,r : (GrWm KC, F ) −→ (GrδWm−2r C(ωY•), F [−r])

for every m, r. We have the commutative diagram

GrWm KQ
GrWm ψ−−−−→ GrWm KC

GrWm πQ,0

y yGrWm πC,0

GrδWm C(KosY•(MY•)) −−−−−−→
GrδWm ψ0

GrδWm C(ωY•)

(5.6.1)

for every m.

5.7. For an element λ ∈ Λ, the morphism

a∗λ : ωpY −→ ωpYλ

can be regarded as a morphism ωpY −→ C(ωY•)0,p ⊂ C(ωY•)p for every p. We set

a∗0 =
∑
λ∈Λ

a∗λ : ωpY −→ C(ωY•)
p,

which induces a morphism

a∗0 : (ωY ,W, F ) −→ (C(ωY•), δW,F )

of bifiltered complexes. The composite of a∗0 and the canonical inclusion C(ωY•) −→ KC is
denoted by a∗. Thus a morphism of bifiltered complexes

a∗ : (ωY ,W, F ) −→ (KC,W, F )

is obtained. Then the equality a∗0 = πC,0a
∗ holds by definition. A morphism of filtered complexes

a∗/∗ : (ωY/∗, F ) −→ (C(ωY/∗), F ) (5.7.1)

is defined by the same way.
Morphisms of filtered complexes

a∗0 : (KosY (MY ),W ) −→ (C(KosY•(MY•)), δW )

a∗ : (KosY (MY ),W ) −→ (KQ,W )

are defined similarly. Then the diagrams

KosY (MY )
ψ(Y,MY )−−−−−→ ωY

a∗0

y ya∗0
C(KosY•(MY•)) −−−−→

ψ0

C(ωY•)

KosY (MY )
ψ(Y,MY )−−−−−→ ωY

a∗
y ya∗
KQ −−−−→

ψ
KC

(5.7.2)

are commutative.

Definition 5.8. We set

(K,W,F ) = ((KQ,W ), (KC,W, F ), ψ)

and

(Hq(Y,K),W, F ) = ((Hq(Y,KQ),W ), (Hq(Y,KC),W, F ),Hq(Y, ψ)),

for an integer q.
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Theorem 5.9. For a log deformation Y −→ ∗, the morphism a∗/∗ in (5.7.1) is a filtered quasi-

isomorphism with respect to the filtrations F on both sides. Therefore the morphism a∗/∗ induces

an isomorphism

Hq(Y, a∗/∗) : Hq(Y, ωY/∗) −→ Hq(Y, C(ωY•/∗))

for every integer q, under which the filtrations F on both sides coincide.
If we assume the following conditions

(5.9.1) Y −→ ∗ is proper, that is, Y is compact,

(5.9.2) all the irreducible components Yλ are Kähler complex manifolds

in addition, then we have the following :

(5.9.3) The morphism π/∗ induces an isomorphism Hq(Y,KC) −→ Hq(Y, C(ωY•/∗)) for every
integer q, under which the filtrations F on both sides coincide.

(5.9.4) The data (Hq(Y,K),W [q], F ) is a mixed Hodge structure for every integer q.

(5.9.5) The spectral sequence Ep,qr (KC, F ) degenerates at E1-terms.

(5.9.6) The spectral sequences Ep,qr (KQ,W ) and Ep,qr (KC,W ) degenerate at E2-terms.

Proof. We can deduce the conclusion from [6] by fixing a total order on Λ. �

Remark 5.10. Here, we recall several isomorphisms for the later use. We note that we can use⊕
λ∈Λk+1,◦ instead of

∏
λ∈Λk+1,◦ by the assumption (5.1.1).

For the complex C(KosY•(MY•)) we have the isomorphism in the derived category

GrδWm C(KosY•(MY•)) =
⊕

λ∈
∏◦ Λ

GrWm+d(λ) KosYλ(MYλ)[−d(λ)]

'
⊕

λ∈
∏◦ Λ

⊕
σ∈Sm+d(λ)(Λ)

ε(σ)⊗Z QYλ∪σ [−m− 2d(λ)]
(5.10.1)

by (2.6.1) and by (3.17.2). For C(ωY•), we have the isomorphism of complexes

GrδWm C(ωY•) =
⊕

λ∈
∏◦ Λ

GrWm+d(λ) ωYλ [−d(λ)]

'
⊕

λ∈
∏◦ Λ

⊕
σ∈Sm+d(λ)(Λ)

ε(σ)⊗Z ΩYλ∪σ [−m− 2d(λ)]
(5.10.2)

by (2.6.1) and by the residue isomorphism (3.7.1). Under the identifications (5.10.1) and (5.10.2),

the morphism GrWm ψ0 coincides with the morphism induced by the inclusion(
2π
√
−1
)−m−d(λ)

ι : Q −→ C

on the direct summand ε(σ)⊗Z QYλ∪σ [−m− 2d(λ)] by Lemma 3.12 and by Lemma 3.18.
Similarly, we have the isomorphism in the derived category

GrWm KQ =
⊕
r≥0

⊕
λ∈

∏◦ Λ

Qur ⊗Q GrWm+d(λ)−2r KosYλ(MYλ)[−d(λ)]

'
⊕
r≥0

⊕
λ∈

∏◦ Λ

⊕
σ∈Sm+d(λ)−2r(Λ)

ε(σ)⊗Z QYλ∪σ [−m− 2d(λ) + 2r]
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and the isomorphism of complexes

GrWm KC =
⊕
r≥0

⊕
λ∈

∏◦ Λ

Cur ⊗C GrWm+d(λ)−2r ωYλ [−d(λ)]

'
⊕
r≥0

⊕
λ∈

∏◦ Λ

⊕
σ∈Sm+d(λ)−2r(Λ)

ε(σ)⊗Z ΩYλ∪σ [−m− 2d(λ) + 2r]

as above. Lemma 3.18 tells us that the morphism GrWm ψ : GrWm KQ −→ GrWm KC is identified
with the morphism induced by the inclusion(

2π
√
−1
)2r−d(λ)−m

ι : Q −→ C

on the direct summand ε(σ)⊗Z QYλ∪σ [−m− 2d(λ) + 2r].

5.11. Now we compare the Gysin morphisms of KC and of C(ωY•) for the later use. For this
purpose, we introduce a new complex.

The morphism

id⊗d : C[u]⊗C ω
p
Yλ
−→ C[u]⊗C ω

p+1
Yλ

yields a complex (C[u]⊗C ωYλ , id⊗d) for every λ. Thus we obtain a co-cubical complex (C[u]⊗C
ωY• , id⊗d). We set L = C(C[u]⊗C ωY• , id⊗d) for a while. The complex L carries the filtration

W and F by the same definition for KC. Then we trivially have (GrWm L,F ) = (GrWm KC, F ) for
every m. Moreover, the morphism πC,r defines a morphism of bifiltered complexes

πC,r : (L,W,F ) −→ (C(ωY•), δW [2r], F [−r])
for every r ≥ 0.

The morphism

(−1)k
d

du
⊗ dlog t∧ : C[u]⊗C ω

p−k
Yλ
−→ C[u]⊗C ω

p+1−k
Yλ

for λ ∈ Λk+1,◦ induces morphisms of bifiltered complexes

(L,W,F ) −→ (L[1],W [1], F ), (KC,W, F ) −→ (KC[1],W [1], F )

which are denoted by C(d/du⊗ dlog t∧). Similarly, morphisms of bifiltered complexes

C(id⊗dlog t∧) : (KC,W, F ) −→ (KC[1],W [−1], F [1])

C(dlog t∧) : (C(ωY•), δW,F ) −→ (C(ωY•)[1], δW [−1], F [1])

are induced by the morphisms

(−1)k id⊗dlog t∧ : C[u]⊗C ω
p−k
Yλ
−→ C[u]⊗C ω

p+1−k
Yλ

(−1)k dlog t∧ : ωp−kYλ
−→ ωp+1−k

Yλ

for every λ ∈ Λk+1,◦ and for every p.
We have the equality

πC,r[1] C( d
du
⊗ dlog t∧) = C(dlog t∧)πC,r+1 (5.11.1)

by definition.

Lemma 5.12. We have

γm(KC,W ) = γm(L,W ) +
(
2π
√
−1
)−1

GrWm C
( d
du
⊗ dlog t ∧

)
for every m.



POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES 169

Proof. By Proposition 1.7. �

Proposition 5.13. We have

GrWm−1 πC,r[1]γm(KC,W )

= γm−2r(C(ωY•), δW ) GrWm πC,r +
(
2π
√
−1
)−1

GrδWm−2r−2 C(dlog t∧) GrWm πC,r+1

for every m, r.

Proof. We obtain

GrWm−1 πC,r[1]γm(L,W ) = γm−2r(C(ωY•), δW ) GrWm πC,r

by the functoriality of the Gysin morphism. Then we obtain the conclusion by (5.11.1) and by
the lemma above. �

Definition 5.14. For λ ∈ Λk+1,◦ and for σ ∈ Sm+k(Λ), a morphism

Π0(λ, σ) : GrδWm C(ωY•) −→ ε(σ)⊗Z ΩYλ∪σ [−m− 2k]

is defined as the projection onto a direct summand under the identification (5.10.2). In particular,
we have a morphism

Π0(λ) = Π0(λ, λ) : GrδW1 C(ωY•) −→ ε(λ)⊗Z ΩYλ [−1− 2k]

for λ ∈ Λk+1,◦. We set

ΘC,0(λ) = ((eλ∧)−1 ⊗ id)Π0(λ) : GrδW1 C(ωY•) −→ ΩYλ [−1− 2k] (5.14.1)

for every λ ∈ Λk+1,◦, where eλ∧ is the isomorphism (2.2.3). Moreover a morphism

ΘC(λ) : GrW1 KC −→ ΩYλ [−1− 2k]

is defined by ΘC(λ) = ΘC,0(λ) GrW1 πC,0, for λ ∈ Λk+1,◦.

Lemma 5.15. In the situation above, we have

ΘC(λ)[2] GrW0 C(id⊗dlog t∧)[1]γ1(KC,W )

= ΘC,0(λ)[2] GrδW0 C(dlog t∧)[1]γ1(C(ωY•), δW ) GrW1 πC,0

for λ ∈ Λk+1,◦.

Proof. Easy by Proposition 5.13. �

5.16. The morphism
d

du
⊗ id : C[u]⊗C ωYλ −→ C[u]⊗C ωYλ

induces a morphism of complexes

d

du
⊗ id : KC −→ KC,

which satisfies the conditions

(
d

du
⊗ id)(WmKC) ⊂Wm−2KC

(
d

du
⊗ id)(F pKC) ⊂ F p−1KC

for every m, p. Similarly, the morphism

d

du
⊗ id : Q[u]⊗Q KosYλ(MYλ) −→ Q[u]⊗Q KosYλ(MYλ)
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induces a morphism of complexes

d

du
⊗ id : KQ −→ KQ,

which satisfies the condition

(
d

du
⊗ id)(WmKQ) ⊂Wm−2KQ

for every m as above. Trivially, these morphisms are compatible with ψ : KQ −→ KC. Thus the
morphism d/du⊗ id induces a morphism

Hq(Y,
d

du
⊗ id) : (Hq(Y,K),W [q], F ) −→ (Hq(Y,K),W [q + 2], F [−1]) (5.16.1)

for every q, denoted by NK for short.

5.17. We recall results in Steenbrink [22] and in Fujisawa-Nakayama [8], which are analogues of
results in Steenbrink [21] from the viewpoint of log geometry.

We set

ApC =
⊕
r≥0

ωp+1
Y /Wrω

p+1
Y

for every p. The morphism dlog t∧ in (3.8.1) induces a morphism

dlog t∧ : ωp+1
Y /Wrω

p+1
Y −→ ωp+2

Y /Wr+1ω
p+2
Y ⊂ Ap+1

C

for every p, r. By setting

d =
⊕
r≥0

(−d− dlog t∧) : ApC −→ Ap+1
C ,

we obtain a complex of C-sheaves AC on Y . The weight filtration W on AC is given by

WmA
p
C =

⊕
r≥0

Wm+2r+1ω
p+1
Y /Wrω

p+1
Y

for every m, and the Hodge filtration F by

FnApC =
⊕

0≤r≤p−n

ωp+1
Y /Wrω

p+1
Y

for every n.
We set

ApQ =
⊕
r≥0

KosY (MY )p+1/Wr KosY (MY )p+1

for every p. The morphism t∧ in (3.13.1) induces a morphism

t∧ : KosY (MY )p+1/Wr KosY (MY )p+1 −→ KosY (MY )p+2/Wr+1 KosY (MY )p+2 ⊂ Ap+1
Q

for every p, r. By setting

d =
⊕
r≥0

(−d− t∧) : ApQ −→ Ap+1
Q ,

we obtain a complex AQ. The weight filtration W on AQ is defined by

WmA
p
Q =

⊕
r≥0

Wm+2r+1 KosY (MY )p+1/Wr KosY (MY )p+1

for every m.
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We can easily check that the morphism
(
2π
√
−1
)r+1

ψY : KosY (MY ) −→ ωY induces a
morphism of filtered complexes

α =
⊕
r≥0

(
2π
√
−1
)r+1

ψY : (AQ,W ) −→ (AC,W )

by using the commutative diagram (3.13.2).

Definition 5.18. We set

(A,W,F ) = ((AQ,W ), (AC,W, F ), α)

and
(Hq(Y,A),W, F ) = ((Hq(Y,AQ),W ), (Hq(Y,AC),W, F ),Hq(Y, α))

for every q.

Remark 5.19. The signs in the definition of the differentials above are different from that in
[22], [8]. Moreover, the Q-structure AQ above is slightly different from the ones in [22], [8]. We
can prove that the above Q-structure induces the same Q-structure as the ones in [22], [8] on
the cohomology groups. However, we will not give the proof here because we do not need this
fact in this article. What we need in this article is Theorem 5.21 below.

5.20. The composite of the morphism

dlog t∧ : ωpY −→ ωp+1
Y

and the projection ωp+1
Y −→ ωp+1

Y /W0ω
p+1
Y can be regarded as a morphism

θ : ωpY −→ ωp+1
Y /W0ω

p+1
Y ⊂ ApC

for every p. It is easy to check that this morphism defines a morphism of complexes, which is
denoted by θ : ωY −→ AC. The morphism θ factors through the surjection ωY −→ ωY/∗. Thus
a morphism of complexes θ/∗ : ωY/∗ −→ AC is obtained.

Theorem 5.21. In the situation above, the morphism θ/∗ : (ωY/∗, F ) −→ (AC, F ) is a filtered
quasi-isomorphism. Therefore the morphism

Hq(Y, θ/∗) : Hq(Y, ωY/∗) −→ Hq(Y,AC)

is an isomorphism for every q, under which the filtrations F on both sides coincide.
If we assume the conditions (5.9.1) and (5.9.2), the data A is a cohomological mixed Hodge

complex on Y . In particular, (Hq(Y,A),W [q], F ) is a mixed Hodge structure for every q.

Proof. By Lemmas 3.7, 3.17, and 3.18, the same proof as in [22], [8] can work. �

Remark 5.22. We have an isomorphism in the derived category

GrWm AQ =
⊕

r≥max(0,−m)

GrWm+2r+1 KosY (MY )[1]

'
⊕

r≥max(0,−m)

⊕
σ∈Sm+2r+1(Λ)

ε(σ)⊗Z QYσ [−m− 2r]
(5.22.1)

and the isomorphism of complexes

GrWm AC =
⊕

r≥max(0,−m)

GrWm+2r+1 ωY [1]

'
⊕

r≥max(0,−m)

⊕
σ∈Sm+2r+1(Λ)

ε(σ)⊗Z ΩYσ [−m− 2r]
(5.22.2)
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as in Remark 5.10. Under these identification, the morphism

GrWm α : GrWm AQ −→ GrWm AC

is identified with the morphism whose restriction on ε(σ) ⊗Z QYσ [−m − 2r] coincides with the

morphism
(
2π
√
−1
)−m−r

ι : Q −→ C.

5.23. As in Steenbrink [22, (5.6)] a morphism of bifiltered complexes

νC : (AC,W, F ) −→ (AC,W [2], F [−1])

is induced from the projection ωp+1
Y /Wrω

p+1
Y −→ ωp+1

Y /Wr+1ω
p+1
Y for r ≥ 0.

Similarly, the projection

KosY (MY )p+1/Wr KosY (MY )p+1 −→ KosY (MY )p+1/Wr+1 KosY (MY )p+1

induces a morphism of filtered complexes νQ : (AQ,W ) −→ (AQ,W [2]) as above. Since the
diagram

AQ
νQ−−−−→ AQ

α

y yα
AC −−−−−−−−→(

2π
√
−1
)
νC

AC

is commutative, the pair of the morphism

ν = (νQ,
(
2π
√
−1
)
νC) : (A,W,F ) −→ (A,W [2], F [−1])

induces a morphism

NA = Hq(Y, ν) : (Hq(Y,A),W [q], F ) −→ (Hq(Y,A),W [q + 2], F [−1])

for every q.

Next, we will define morphisms of complexes AQ −→ KQ and AC −→ KC which play an
important role in the remainder of this article.

Definition 5.24. We set

ResλY = ((eλ∧)−1 ⊗ id) Res
λ
Y : ωY −→ ωYλ [−|λ|]

for an element λ ∈
∏◦

Λ.

Because the morphism ResλY sends WrωY to zero for r ≤ d(λ), a morphism

u[d(λ)−r] ⊗ ResλY : ωp+1
Y /Wrω

p+1
Y −→ C[u]⊗C ω

p−d(λ)
Yλ

⊂ Kp
C

is induced, where we set u[n] = un/n! for a non-negative integer n. Then we set

ϕC =
⊕
r≥0

∑
λ∈

∏◦ Λ
d(λ)≥r

(−1)d(λ)
(
2π
√
−1
)d(λ)−r

u[d(λ)−r] ⊗ ResλY : ApC −→ Kp
C

for every p.

Lemma 5.25. The morphism ϕC above defines a morphism of complexes preserving the filtra-
tions W and F .
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Proof. Since it is easy to check that ϕC preserves the filtrations W and F , it suffices to prove
that ϕC is a morphism of complexes.

For any λ ∈
∏◦

Λ, the equality

ResλY d = (−1)d(λ)+1dResλY (5.25.1)

can be easily checked by definition. Moreover, we can easily see the equality

ResλY dlog t∧ = (−1)d(λ)+1(dlog t∧) ResλY +

d(λ)∑
i=0

(−1)ia∗λi,λ ResλiY (5.25.2)

as morphisms from ωpY to ω
p−d(λ)
Yλ

by Lemma 3.9.

We write the differentials of the complexes KC and AC by dK and dA and the projection

Kp
C =

⊕
λ∈

∏◦ Λ

C[u]⊗C ω
p−d(λ)
Yλ

−→ C[u]⊗C ω
p−d(λ)
Yλ

by prλ for a while. In order to prove that ϕC is a morphism of complexes, it suffices to prove
the equality

prλ dKϕC = prλ ϕCdA : ApC −→ C[u]⊗C ω
p+1−d(λ)
Yλ

(5.25.3)

for any λ ∈
∏◦

Λ. By the definition of the differential of the Čech complex in 2.5, we have

prλ dK =

d(λ)∑
i=0

(−1)ia∗λi,λ prλi +(−1)d(λ)(id⊗d) prλ

+ (−1)d(λ)(
(
2π
√
−1
)−1 d

du
⊗ dlog t∧) prλ,

where λi is the element
∏

Λ defined in (2.1.1). On the other hand, we have

prλ ϕC|ωp+1
Y /Wrω

p+1
Y

=

{
(−1)d(λ)

(
2π
√
−1
)d(λ)−r

u[d(λ)−r] ⊗ ResλY d(λ) ≥ r
0 d(λ) < r

for a non-negative integer r. Take r ≥ 0 and λ ∈
∏◦

Λ with d(λ) = k. If k ≥ r + 1, we have

prλ dKϕC|ωp+1
Y /Wrω

p+1
Y

=

k∑
i=0

(−1)k+i+1
(
2π
√
−1
)k−r−1

u[k−r−1] ⊗ (a∗λi,λ ResλiY )

+
(
2π
√
−1
)k−r

u[k−r] ⊗ (dResλY )

+
(
2π
√
−1
)k−r−1

u[k−r−1] ⊗ (dlog t ∧ ResλY )

by using d(λi) = d(λ)− 1 = k − 1, and

prλ ϕCdA|ωp+1
Y /Wrω

p+1
Y

= (−1)k
(
2π
√
−1
)k−r

u[k−r] ⊗ (ResλY (−d))

+ (−1)k
(
2π
√
−1
)k−r−1

u[k−r−1] ⊗ (ResλY (−dlog t∧))

= (−1)k+1
(
2π
√
−1
)k−r

u[k−r] ⊗ (ResλY d)

+ (−1)k+1
(
2π
√
−1
)k−r−1

u[k−r−1] ⊗ (ResλY dlog t∧)
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because (dlog t∧)(ωp+1
Y /Wrω

p+1
Y ) ⊂ ωp+2

Y /Wr+1ω
p+2
Y Then we obtain (5.25.3) by (5.25.1) and

by (5.25.2). If k = r, we have

prλ dKϕC|ωp+1
Y /Wrω

p+1
Y

= u[0] ⊗ (dResλY )

by d(λi) = k − 1 < r and by (d/du)u[0] = 0. On the other hand,

prλ ϕCdA = (−1)k+1u[0] ⊗ (ResλY d)

because (dlog t∧)(ωp+1
Y /Wrω

p+1
Y ) ⊂ ωp+2

Y /Wr+1ω
p+2
Y again. Thus we obtain (5.25.3) by (5.25.1).

If k < r, we have

prλ dKϕC = prλ ϕCdA = 0

by definition. Thus we obtain (5.25.3) for any λ ∈
∏◦

Λ. �

Definition 5.26. We set

ResλY = ((eλ∧)−1 ⊗ id) Res
λ
Y : KosY (MY ) −→ KosYλ(MYλ)[−|λ|]

for an element λ ∈
∏◦

Λ, and

ϕQ =
⊕
r≥0

∑
λ∈

∏◦ Λ
d(λ)≥r

(−1)d(λ)u[d(λ)−r] ⊗ ResλY : ApQ −→ Kp
Q

for every p. By Lemma 3.19, ϕQ is a morphism of complexes as in the case of ϕC, which also
preserves the filtration W .

Lemma 5.27. The diagram

AQ
ϕQ−−−−→ KQ

α

y yψ
AC −−−−→

ϕC
KC

is commutative.

Proof. Lemma 3.18 implies the conclusion. �

Definition 5.28. The pair (ϕQ, ϕC) is abbreviated as

ϕ : A −→ K

and the pair (Hq(Y, ϕQ),Hq(Y, ϕC)) as

Hq(Y, ϕ) : Hq(Y,A) −→ Hq(Y,K)

for simplicity.

Theorem 5.29. If a log deformation Y −→ ∗ satisfies the conditions (5.9.1) and (5.9.2), then

Hq(Y, ϕ) : Hq(Y,A) −→ Hq(Y,K)

is an isomorphism of mixed Hodge structures for every q.
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Proof. It is clear that Hq(Y, ϕ) is a morphism of mixed Hodge structures. Therefore it is sufficient
to prove that the morphism Hq(Y, ϕC) : Hq(Y,AC) −→ Hq(Y,KC) is an isomorphism. Lemma
3.9 implies that the diagram

ωY/∗
a∗/∗−−−−→ C(ωY•/∗)

θ/∗

y xπ/∗
AC −−−−→

ϕC
KC

is commutative. The morphisms Hq(Y, a∗/∗), Hq(Y, π/∗) are isomorphisms for every q by Theorem

5.9 and the morphism Hq(Y, θ/∗) is an isomorphism for every q by Theorem 5.21. Therefore the
morphism Hq(Y, ϕC) is an isomorphism for every q. �

Corollary 5.30. In the situation above, the morphism ϕC induces filtered isomorphism

Ep,q2 (ϕC) : (Ep,q2 (AC,W ), F )
'−→ (Ep,q2 (KC,W ), F )

for every p, q.

Proposition 5.31. The diagrams

AC
ϕC−−−−→ KC(

2π
√
−1
)
νC

y y d
du⊗id

AC −−−−→
ϕC

KC

AQ
ϕQ−−−−→ KQ

νQ

y y d
du⊗id

AQ −−−−→
ϕQ

KQ

are commutative. Therefore the morphism NA and NK are identified under the isomorphism
Hq(Y, ϕ) in Theorem 5.29.

Definition 5.32. We set

ϕC,0 = πC,0ϕC : (ApC,W, F ) −→ (C(ωY•)p, δW,F )

for every p. It does not define a morphism of complexes. However it induces a morphism of
filtered complexes

GrWm ϕC,0 : (GrWm AC, F ) −→ (GrδWm C(ωY•), F )

for every m. Explicitly, we have

ϕC,0 = (−1)r
∑

λ∈Λr+1,◦

((eλ∧)−1 ⊗ id) ResλY : ωp+1
Y /Wrω

p+1
Y −→

⊕
λ∈

∏
Λ

ω
p−d(λ)
Yλ

= C(ωY•)p

on the direct summand ωp+1
Y /Wrω

p+1
Y for every r ≥ 0.

6. Product

6.1. Let Y −→ ∗ be a log deformation satisfying condition (5.1.1). By sending

(C[u]⊗C ω
p
Yλ

)⊗C (C[u]⊗C ω
q
Yλ

) 3 (P (u)⊗ ω)⊗ (Q(u)⊗ η)

to

P (u)Q(u)⊗ ω ∧ η ∈ C[u]⊗C ω
p+q
Yλ

we obtain a morphism

(C[u]⊗C ωYλ)⊗C (C[u]⊗C ωYλ) −→ C[u]⊗C ωYλ ,
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denoted by the same letter ∧. In fact, it is easy to check that the morphism ∧ is a morphism of
complexes. Thus the morphisms of complexes

∧ : ωYλ ⊗C ωYλ −→ ωYλ
∧ : ωYλ/∗ ⊗C ωYλ/∗ −→ ωYλ/∗

∧ : (C[u]⊗C ωYλ)⊗C (C[u]⊗C ωYλ) −→ C[u]⊗C ωYλ

are obtained. For these three morphisms, the images of Wa ⊗Wb (resp. F a ⊗F b) are contained
in Wa+b (resp. F a+b) by definition. These morphisms are compatible with the morphisms
πC,λ,0, πλ/∗ and with the morphism induced from the inclusion Yµ ⊂ Yλ for λ ⊂ µ.

6.2. Now we consider the case of the Koszul complex. We take local sections

f
[i1]
1 f

[i2]
2 · · · f [ik]

k ⊗ x ∈ KosYλ(M
σ
Yλ

;n)p, g
[j1]
1 g

[j2]
2 · · · g[jl]

l ⊗ y ∈ KosYλ(M
σ
Yλ

;m)q

respectively, where

f1, f2, . . . , fk, g1, g2, . . . gl ∈ OYλ , x ∈
p∧

(M
σ
Yλ

)gp, y ∈
q∧

(M
σ
Yλ

)gp

and i1, i2, . . . ik, j1, j2, . . . jl are positive integers with the conditions i1 + i2 + · · · + ik = n − p
and j1 + j2 + · · ·+ jl = m− q. Then

f
[i1]
1 f

[i2]
2 · · · f [ik]

k g
[j1]
1 g

[j2]
2 · · · g[jl]

l ⊗ x ∧ y

is a local section of

Γn+m−p−q(OYλ)⊗
p+q∧

(M
σ
Yλ

)gp = KosYλ(M
σ
Yλ

;n+m)p+q

by the definition (3.11.1). We can check that this correspondence induces a morphism of com-
plexes

∧ : KosYλ(M
σ
Yλ

)⊗Q KosYλ(M
σ
Yλ

) −→ KosYλ(M
σ
Yλ

), (6.2.1)

which sends Wa ⊗Wb to Wa+b. Similarly to the case of C[u]⊗C ωYλ , we define a morphism

(Q[u]⊗Q KosYλ(M
σ
Yλ

))⊗Q (Q[u]⊗Q KosYλ(M
σ
Yλ

)) −→ Q[u]⊗Q KosYλ(M
σ
Yλ

)

by using the product of Q[u] and the product ∧ of KosYλ(M
σ
Yλ

). This morphism is also denoted

by ∧ by abuse of the language.
For the case of σ = ∅, we have the commutative diagram

QYλ ⊗Q QYλ −−−−→ KosYλ(O∗Yλ)⊗Q KosYλ(O∗Yλ)y y∧
QYλ −−−−→ KosYλ(O∗Yλ)

for every λ ∈ S(Λ), where the top horizontal arrow is the tensor product of the morphism
(3.11.4), the bottom horizontal arrow is the morphism (3.11.4) itself and the left vertical arrow
is the canonical morphism which sends a⊗ b ∈ Q⊗Q Q to ab ∈ Q. Because of this compatibility,
the canonical morphism on the left is denoted by

∧ : QYλ ⊗Q QYλ −→ QYλ (6.2.2)

in the remainder of this article.
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For every λ, we can check the commutativity of the diagram

KosYλ(MYλ)⊗Q KosYλ(MYλ)
∧−−−−→ KosYλ(MYλ)

ψ(Yλ,MYλ
)⊗ψ(Yλ,MYλ

)

y yψ(Yλ,MYλ
)

ωYλ ⊗C ωYλ −−−−→
∧

ωYλ

(6.2.3)

by direct computation.

6.3. The morphisms ∧ in 6.1 and 6.2 define the morphisms

ωY• ⊗C ωY• −→ ωY•

ωY•/∗ ⊗C ωY•/∗ −→ ωY•/∗

(C[u]⊗C ωY•)⊗C (C[u]⊗C ωY•) −→ C[u]⊗C ωY•

KosY•(MY•)⊗Q KosY•(MY•) −→ KosY•(MY•)

(Q[u]⊗Q KosY•(MY•))⊗Q (Q[u]⊗Q KosY•(MY•)) −→ Q[u]⊗Q KosY•(MY•)

of co-cubical complexes over Y•, where the left hand sides denote the co-cubical complexes defined
in 2.8. Thus the morphisms of complexes

C(ωY• ⊗ ωY•) −→ C(ωY•)
C(ωY•/∗ ⊗ ωY•/∗) −→ C(ωY•/∗)
C((C[u]⊗C ωY•)⊗C (C[u]⊗C ωY•)) −→ KC = C(C[u]⊗C ωY•)

C(KosY•(MY•)⊗Q KosY•(MY•)) −→ C(KosY•(MY•))

C((Q[u]⊗Q KosY•(MY•))⊗Q (Q[u]⊗Q KosY•(MY•)))

−→ KQ = C(Q[u]⊗Q KosY•(MY•))

(6.3.1)

are induced.

Definition 6.4. We define the morphisms of complexes

ΦC,0 : C(ωY•)⊗C C(ωY•) −→ C(ωY•)
Φ/∗ : C(ωY•/∗)⊗C C(ωY•/∗) −→ C(ωY•/∗)
ΦC : KC ⊗C KC −→ KC

ΦQ,0 : C(KosY•(MY•))⊗Q C(KosY•(MY•)) −→ C(KosY•(MY•))

ΦQ : KQ ⊗Q KQ −→ KQ

by composing the morphisms in (6.3.1) with the morphisms τ in Definition 2.9.

6.5. We have the commutative diagrams

C(KosY•(MY•))⊗Q C(KosY•(MY•))
ΦQ,0−−−−→ C(KosY•(MY•))

ψ0⊗ψ0

y yψ0

C(ωY•)⊗C C(ωY•) −−−−→
ΦC,0

C(ωY•)

and

KQ ⊗Q KQ
ΦQ−−−−→ KQ

ψ⊗ψ
y yψ

KC ⊗C KC −−−−→
ΦC

KC

(6.5.1)



178 TARO FUJISAWA

from the commutativity of the diagram (6.2.3). Moreover, we also have the commutative diagram

KC ⊗C KC
ΦC−−−−→ KC

π/∗⊗π/∗
y yπ/∗

C(ωY•/∗)⊗C C(ωY•/∗) −−−−→
Φ/∗

C(ωY•/∗)

from the compatibility of ∧ with the morphism πλ/∗.

Lemma 6.6. The diagram

ωY/∗ ⊗C ωY/∗
∧−−−−→ ωY/∗

a∗/∗⊗a
∗
/∗

y ya∗/∗
C(ωY•/∗)⊗C C(ωY•/∗) −−−−→

Φ/∗
C(ωY•/∗)

is commutative.

Lemma 6.7. The equalities

ΦC

(( d
du
⊗ id

)
⊗ id + id⊗

( d
du
⊗ id

))
=
( d
du
⊗ id

)
ΦC

ΦQ

(( d
du
⊗ id

)
⊗ id + id⊗

( d
du
⊗ id

))
=
( d
du
⊗ id

)
ΦQ

hold.

6.8. From Corollary 2.12, we obtain

ΦC,0(δWa C(ωY•)⊗ δWb C(ωY•)) ⊂ δWa+b C(ωY•)

ΦC,0(F a C(ωY•)⊗ F b C(ωY•)) ⊂ F a+b C(ωY•)

Φ/∗(F
a C(ωY•/∗)⊗ F

b C(ωY•/∗)) ⊂ F
a+b C(ωY•/∗)

ΦC(WaKC ⊗WbKC) ⊂Wa+bKC

ΦC(F aKC ⊗ F bKC) ⊂Wa+bKC

ΦQ,0(δWa C(KosY•(MY•))⊗ δWb C(KosY•(MY•))) ⊂ δWa+b C(KosY•(MY•))

ΦQ(WaKQ ⊗WbKQ) ⊂Wa+bKQ

(6.8.1)

for every a, b. Therefore we obtain morphisms

GrWa,b ΦC : GrWa KC ⊗GrWb KC −→ GrWa+bKC

GrδWa,b ΦC,0 : GrδWa C(ωY•)⊗GrδWb C(ωY•) −→ GrδWa+b C(ωY•)
and so on, for every a, b.

Definition 6.9. We set

ΨC = ΦC(ϕC ⊗ ϕC) : AC ⊗C AC −→ KC,

which is a morphism of complexes. Moreover, we set

ΨC,0 = ΦC,0(ϕC,0 ⊗ ϕC,0) : ApC ⊗C A
q
C −→ C(ωY•)

p+q

for every p, q. Although ΨC,0 dose not define a morphism of complexes, it induces a morphism
of complexes

GrWa,b ΨC,0 : GrWa AC ⊗C GrWb AC −→ GrδWa+b C(ωY•)
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for every a, b as before.

6.10. We can easily see the equality

ΨC,0 = πC,0ΨC (6.10.1)

by πC,0ΦC = ΦC,0(πC,0 ⊗ πC,0).

Proposition 6.11. The equality

ΨC(νC ⊗ id + id⊗νC) = (
d

du
⊗ id)ΨC

holds

Proof. Proposition 5.31 and Lemma 6.7 yield the conclusion. �

6.12. For the later use, we describe the morphism

ΘC,0(λ)[1] GrδW0 C(dlog t∧) GrWm,−m ΨC,0 : GrWm AC ⊗C GrW−mAC −→ ΩYλ [−2k] (6.12.1)

for λ ∈ Λk+1,◦ and for a non-negative integer m, where ΘC,0(λ) is the morphism (5.14.1).

Lemma 6.13. Under the identification (5.22.2), the restriction of the morphism (6.12.1) on the
direct summand

(ε(σ)⊗Z ΩYσ [−m− 2r])⊗C (ε(τ)⊗Z ΩYτ [m− 2s])

is the zero morphism except for the case of σ = τ = λ, s = r +m.
For the case of σ = τ = λ, s = r + m, the restriction of the morphism (6.12.1) on the direct

summand
(ε(λ)⊗Z ΩYλ [−m− 2r])⊗C (ε(λ)⊗Z ΩYλ [−m− 2r])

coincides with the composite of the exchange isomorphism

(ε(λ)⊗Z ΩYλ [−m− 2r])⊗C (ε(λ)⊗Z ΩYλ [−m− 2r])

' ε(λ)⊗Z ε(λ)⊗Z ΩYλ [−m− 2r]⊗C ΩYλ [−m− 2r]

and the morphism

(−1)rϑ(λ)⊗ ∧ [−m− 2r,−m− 2r]

: ε(λ)⊗Z ε(λ)⊗Z ΩYλ [−m− 2r]⊗C ΩYλ [−m− 2r] −→ ΩYλ [−2m− 4r]

where ϑ(λ) is the morphism (2.2.1), and where ∧[−m − 2r,−m − 2r] denotes the morphism
induced from ∧ as in (1.4.2).

Proof. On the direct summand

(ε(σ)⊗Z ΩYσ [−m− 2r])⊗C (ε(τ)⊗Z ΩYτ [m− 2s])

of GrWm AC ⊗C GrW−mAC, the morphism GrWm ϕC,0 ⊗GrW−m ϕC,0 coincides with the morphism

(−1)r+s
∑
µ,ν

((eµ∧)−1 ⊗ id)⊗ ((eν∧)−1 ⊗ id), (6.13.1)

where µ ∈ Λr+1,◦, ν ∈ Λs+1,◦ with µ ⊂ σ, ν ⊂ τ . Therefore the image of the direct summand

(ε(σ)⊗Z ΩYσ [−m− 2r])⊗C (ε(τ)⊗Z ΩYτ [m− 2s])

by the morphism GrWm ϕC,0 ⊗GrW−m ϕC,0 is contained in⊕
µ,ν

(ε(σ \ µ)⊗Z ΩYσ [−m− 2r])⊗C (ε(τ \ ν)⊗Z ΩYτ [m− 2s])

for µ ∈ Λr+1,◦, ν ∈ Λs+1,◦ with µ ⊂ σ, ν ⊂ τ .
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On the other hand, Corollary 3.10 implies that the morphism

ΘC,0(λ) GrδW0 C(dlog t∧) GrδWm,−m ΦC,0 (6.13.2)

is equal to zero on the direct summand

(ε(σ \ µ)⊗Z ΩYσ [−m− 2r])⊗C (ε(τ \ ν)⊗Z ΩYτ [m− 2s])

of GrWm+r ωYµ [−r]⊗C GrW−m+s ωYν [−s], unless the following two conditions are satisfied:

(6.13.3) µ = hr(λ) and ν = tr(λ)

(6.13.4) (σ \ µ) ∪ (τ \ ν) ⊂ λ.

By condition (6.13.3) we have k = r+ s. Moreover, condition (6.13.3) implies λ = µ∪ ν ⊂ σ ∪ τ
because of the conditions µ ⊂ σ, ν ⊂ τ . By (6.13.3) and (6.13.4) we have σ ⊂ λ, τ ⊂ λ. Therefore
λ = σ ∪ τ . Now we have the equalities

|λ| = |σ|+ |τ | − |σ ∩ τ | = 2(k + 1)− |σ ∩ τ |
from the equality k = r + s, which imply |σ ∩ τ | = k + 1. Then λ = σ ∩ τ = σ ∪ τ . Thus we
conclude that λ = σ = τ , s = r +m and k = m+ 2r.

On the direct summand

(ε(λ \ µ)⊗Z Ωp−m−2r
Yλ

)⊗C (ε(λ \ ν)⊗Z Ωq−m−2r
Yλ

) (6.13.5)

of GrWm+r ω
p−r
Yµ
⊗C GrWr ωq−m−rYν

with the conditions s = r + m, k = m + 2r and (6.13.3), the

morphism GrδWm,−m ΦC,0 coincides with the composite of the exchange isomorphism

(ε(λ \ µ)⊗Z Ωp−m−2r
Yλ

)⊗C (ε(λ \ ν)⊗Z Ωq−m−2r
Yλ

)

' ε(λ \ µ)⊗Z ε(λ \ ν)⊗Z Ωp−m−2r
Yλ

⊗C Ωq−m−2r
Yλ

(6.13.6)

and the morphism

(−1)(p−r)(r+m)+(p−m)|λ\ν|χ(λ \ µ, λ \ ν)⊗ ∧ = (−1)r+pmχ(λ \ µ, λ \ ν)⊗ ∧
by using |λ \ ν| = r, where χ(λ \ µ, λ \ ν) is the morphism (2.2.2). Because C(dlog t∧) on the

direct summand ωYλ [−k] of C(ωY•) is the morphism (−1)k(dlog t∧), the morphism (6.13.2) is
equal to the composite of the isomorphism (6.13.6) and the morphism

(−1)m+r+pm(eλ∧)−1(eλ(r)∧)χ(λ \ µ, λ \ ν)⊗ ∧
on the direct summand (6.13.5) by Corollary 3.10, by k = m+ 2r and by (λ \ µ) ∪ (λ \ ν) = λr.
Here, the equality

ϑ(λ) = (eλ∧)−1(eλ(r)∧)χ(λ \ µ, λ \ ν)((eµ∧)−1 ⊗ (eν∧)−1) : ε(λ)⊗Z ε(λ) −→ Z
can be easily checked. Thus we obtain the conclusion by considering (6.13.1) with r+s = m+2r
and by the sign convention (1.4.1). �

Definition 6.14. From the commutativity of the diagram (6.5.1), a pair of the morphisms
(Hp,q(Y,ΦQ),Hp,q(Y,ΦC)) is denoted by

Hp,q(Y,Φ) : Hp(Y,K)⊗Hq(Y,K) −→ Hp+q(Y,K)

for every p, q. Sometimes, for x ∈ Hp(Y,K) and y ∈ Hq(Y,K), Hp,q(Y,Φ)(x ⊗ y) is simply
denoted by x ∪ y if there is no danger of confusion.

Lemma 6.15. We have
(x ∪ y) ∪ z = x ∪ (y ∪ z)

for every x ∈ Hp(Y,K), y ∈ Hq(Y,K) and z ∈ Hr(Y,K).
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Proof. By Lemma 2.11. �

Lemma 6.16. As for the filtration, we have

WaHp(Y,K) ∪WbH
q(Y,K) ⊂Wa+bH

p+q(Y,K) (6.16.1)

F aHp(Y,K) ∪ F bHq(Y,K) ⊂ F a+bHp+q(Y,K) (6.16.2)

for every a, b. In particular, we obtain the morphism of mixed Hodge structures

∪ : (Hp(Y,K),W [p], F )⊗ (Hq(Y,K),W [q], F ) −→ (Hp+q(Y,K),W [p+ q], F )

for every p, q if we assume the conditions (5.9.1) and (5.9.2).

Proof. Easy by (6.8.1). �

Lemma 6.17. Under the assumptions (5.9.1) and (5.9.2), we have

y ∪ x = (−1)pqx ∪ y

for x ∈ Hp(Y,K) and for y ∈ Hq(Y,K).

Proof. The commutativity of the diagrams

Hp(Y,K)⊗Hq(Y,K)
Hp,q(Y,Φ)−−−−−−→ Hp+q(Y,K)

Hp(Y,π/∗)⊗Hq(Y,π/∗)

y yHp+q(Y,π/∗)

Hp(Y, C(ωY•/∗))⊗Hq(Y, C(ωY•/∗)) −−−−−−−−→
Hp,q(Y,Φ/∗)

Hp+q(Y, C(ωY•/∗))

and

Hp(Y, ωY/∗)⊗Hq(Y, ωY/∗)
∧−−−−→ Hp+q(Y, ωY/∗)

Hp(Y,a∗/∗)⊗Hq(Y,a∗/∗)

y yHp+q(Y,a∗/∗)

Hp(Y, C(ωY•/∗))⊗Hq(Y, C(ωY•/∗)) −−−−−−−−→
Hp,q(Y,Φ/∗)

Hp+q(Y, C(ωY•/∗))

implies the conclusion, by using the fact that Hp(Y, π/∗) and Hp(Y, a∗/∗) are isomorphisms for all

p. �

Definition 6.18. The wedge product on ωY induces a morphism

ωp+1
Y /Wrω

p+1
Y ⊗C W0ω

q
Y −→ ωp+q+1

Y /Wrω
p+q+1
Y

because of the inclusion Wrω
p+1
Y ∧W0ω

q
Y ⊂Wrω

p+q+1
Y . We define a morphism

ΨC : ApC ⊗C W0ω
q
Y −→ Ap+qC

by the direct sum of the morphism above. It is easy to see that ΨC defines a morphism of
complexes AC ⊗C W0ωY −→ AC.

On the other hand, the wedge product (6.2.1) on KosY (MY ) induces a morphism

KosY (MY )p+1/Wr KosY (MY )p+1 ⊗Q W0 KosY (MY )q

−→ KosY (MY )p+q+1/Wr KosY (MY )p+q+1

for every p, q, r. These morphisms define a morphism of complexes

ΨQ : AQ ⊗Q W0 KosY (MY ) −→ AQ

as above.
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6.19. We can easily see that the diagram

AQ ⊗Q W0 KosY (MY )
ΨQ−−−−→ AQ

α⊗ψ
y yα

AC ⊗C W0ωY −−−−→
ΨC

AC

is commutative. As for the filtration, we easily see

ΨC(WmAC ⊗C W0ωY ) ⊂WmAC

ΨC(F pAC ⊗ F qW0ωY ) ⊂ F p+qAC

ΨQ(WmAQ ⊗Q W0 KosY (MY )) ⊂WmAQ

for every m, p, q. Therefore the morphisms

GrWm ΨC : GrWm AC ⊗C W0ωY −→ GrWm AC

GrWm ΨQ : GrWm AQ ⊗Q W0 KosY (MY ) −→ GrWm AQ

are induced for every m. The following two lemmas are easily proved. We omit the proofs here.

Lemma 6.20. Under the identification (5.22.2), the morphism GrWm ΨC coincides with the mor-
phism

(id⊗ ∧ [−m− 2r,0]) · (id⊗a∗σ)

: ε(σ)⊗Z ΩYσ [−m− 2r]⊗C W0ωY −→ ε(σ)⊗Z ΩYσ [−m− 2r]

on the direct summand ε(σ)⊗Z ΩYσ [−m−2r]⊗CW0ωY , where a∗σ denotes the morphism induced
by the inclusion aσ : Yσ −→ Y .

Similarly, under the identification (5.22.1), the restriction of the morphism GrWm ΨQ is iden-
tified with the morphism

(id⊗ ∧ [−m− 2r,0])(id⊗a−1
σ )

: ε(σ)⊗Z QYσ [−m− 2r]⊗Q QY −→ ε(σ)⊗Z QYσ [−m− 2r]

on the direct summand ε(σ)⊗Z QYσ [−m− 2r]⊗Q QY of GrWm AQ ⊗QW0 KosY (MY ), where ∧ is
the morphism (6.2.2).

Lemma 6.21. The diagrams

AQ ⊗Q W0 KosY (MY )
ΨQ−−−−→ AQ

ϕQ⊗a∗
y yϕQ

KQ ⊗Q KQ −−−−→
ΦQ

KQ

AC ⊗C W0ωY
ΨC−−−−→ AC

ϕC⊗a∗
y yϕC

KC ⊗C KC −−−−→
ΦC

KC

are commutative.

7. Trace morphism

7.1. Let Y −→ ∗ be a log deformation satisfying conditions (5.9.1) and (5.9.2). In addition, we
assume

(7.1.1) all the irreducible components Yλ are of dimension n

in the remainder of this article.
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Lemma 7.2. The condition GrWm Hq(Y,KC) 6= 0 implies the inequalities −q ≤ m ≤ q and
−2n+ q ≤ m ≤ 2n− q.

Proof. The condition GrWm Hq(Y,KC) 6= 0 is equivalent to GrWm Hq(Y,AC) 6= 0 by Theorem 5.29.

The condition GrWm Hq(Y,AC) 6= 0 implies E−m,q+m1 (AC,W ) 6= 0. If this condition is the case,
then the identification

E−m,q+m1 (AC,W ) = Hq(Y,GrWm AC)

'
⊕

r≥max(0,−m)

⊕
σ∈Sm+2r+1(Λ)

ε(σ)⊗Z Hq−m−2r(Yσ,ΩYσ )

induced by (5.22.2) gives us the inequalities 0 ≤ q −m − 2r ≤ 2 dimYσ = 2(n −m − 2r). The
conclusion can be easily obtained from these inequalities. �

Corollary 7.3. The condition Hq(Y,K) 6= 0 implies 0 ≤ q ≤ 2n.

Lemma 7.4. We have

W−1H2n(Y,KC) = 0,W0H2n(Y,KC) = H2n(Y,KC)

for the weight filtration W on H2n(Y,KC). On the other hand, we have

FnH2n(Y,KC) = H2n(Y,KC), Fn+1H2n(Y,KC) = 0

for the Hodge filtration F .

Proof. Lemma 7.2 shows that GrWm H2n(Y,KC) = 0 for m 6= 0, Hence we obtain the conclusion
for the filtration W .

We have

(E0,2n
1 (AC,W ), F ) '

⊕
r≥0

⊕
σ∈S2r+1(Λ)

(ε(σ)⊗Z H2n−2r(Yσ,ΩYσ ), F [−r])

as in the proof of Lemma 7.2. Since dimYσ = n− 2r, H2n−2r(Yσ,ΩYσ ) = 0 for r > 0. Therefore

GrpF E
0,2n
1 (AC,W ) =

⊕
σ∈Λ

ε(σ)⊗Z GrpF H2n(Yσ,ΩYσ ) 6= 0

implies p = n. Thus we conclude that

GrpF E
0,2n
2 (AC,W ) ' GrpF E

0,2n
2 (KC,W ) 6= 0

implies p = n as desired. �

Corollary 7.5. We have an exact sequence

E−1,2n
1 (KC,W ) −−−−→ ZC −−−−→ H2n(Y,KC) −−−−→ 0 (7.5.1)

by setting ZC = Ker(d1 : E0,2n
1 (KC,W ) −→ E1,2n

1 (KC,W )).

Proof. We have

H2n(Y,KC) ' GrW0 H2n(Y,KC) ' E0,2n
2 (KC,W )

by Corollary 7.4 and by E2-degeneration of the spectral sequence Ep,qr (KC,W ). �

7.6. For λ ∈
∏◦

Λ, we have the morphism∫
Yλ

: H2n−2d(λ)(Yλ,ΩYλ) −→ C
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because dimYλ = n− d(λ) for λ ∈
∏◦

Λ. On the other hand, we have the morphisms

ΘC,0(λ)[1] GrδW0 C(dlog t∧) : GrδW0 C(ωY•) −→ ΩYλ [−2d(λ)]

ΘC(λ)[1] GrW0 C(id⊗dlog t∧) : GrW0 KC −→ ΩYλ [−2d(λ)]

for every λ ∈
∏◦

Λ.

Definition 7.7. The morphisms

ΘC,0 : E0,2n
1 (C(ωY•), δW ) = H2n(Y,GrδW0 C(ωY•)) −→ C

ΘC : E0,2n
1 (KC,W ) = H2n(Y,GrW0 KC) −→ C

are defined by

ΘC,0 =
∑

λ∈
∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

H2n(Y,ΘC,0(λ)[1] GrδW0 C(dlog t∧))

ΘC =
∑

λ∈
∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

H2n(Y,ΘC(λ)[1] GrW0 C(id⊗dlog t∧))

respectively, where ε(a) = (−1)a(a−1)/2 as in [11, (3.3)], [18, I-14].

7.8. We can easily check the equality

ΘC = ΘC,0H2n(Y,GrW0 πC) (7.8.1)

by direct computation.

Proposition 7.9. We have ΘCd1 = 0.

Proof. The morphism d1 : E−1,2n
1 (KC,W ) −→ E0,2n

1 (KC,W ) is induced by the Gysin morphism

γ1(KC,W ) : GrW1 KC −→ GrW0 KC[1]. Therefore we have

ΘCd1 =
∑

λ∈
∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

H2n−1(Y,ΘC(λ)[2] GrW0 C(id⊗dlog t∧)[1]γ1(KC,W ))

=
∑

λ∈
∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

H2n−1(Y,ΘC,0(λ)[2] GrδW0 C(dlog t∧)[1]γ1(C(ωY•), δW ) GrW1 πC,0)

= ΘC,0d1H2n−1(Y,GrW1 πC,0)

by Lemma 5.15, where d1 in the last equality stands for the morphism of E1-terms of the spectral
sequence Ep,qr (C(ωY•), δW ). Therefore the following lemma implies the conclusion. �

Lemma 7.10. For the morphism d1 : E−1,2n
1 (C(ωY•), δW ) −→ E0,2n

1 (C(ωY•), δW ), we have
ΘC,0d1 = 0.

Proof. Because we have

GrδW0 C(dlog t∧)[1]γ1(C(ωY•), δW ) = γ2(C(ωY•)[1], δW ) GrδW1 C(dlog t∧)

= −γ2(C(ωY•), δW )[1] GrδW1 C(dlog t∧)
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from the functoriality of the Gysin morphism and from the equality (1.5.1),

ΘC,0d1 = −
∑

λ∈
∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

H2n(Y,ΘC,0(λ)[1]γ2(C(ωY•), δW ))H2n−1(Y,GrδW1 C(dlog t∧))

is obtained. Then it suffices to prove that the morphism∑
λ∈

∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

H2n(Y,ΘC,0(λ)[1]γ2(C(ωY•), δW ))

from H2n(Y,GrδW2 C(ωY•)) to C is the zero morphism.
For λ ∈ Λk+1,◦, Lemma 2.7 and Proposition 4.5 imply that the restriction of the morphism

ΘC,0(λ)[1]γ2(C(ωY•), δW ) : GrδW2 C(ωY•) −→ ΩYλ [−2k] (7.10.1)

is the zero morphism on the direct summand

ε(σ)⊗Z ΩYµ∪σ [−2− 2d(µ)] (7.10.2)

of GrδW2 C(ωY•) for µ ∈
∏◦

Λ and for σ ∈ S2+d(µ)(Λ) under the identification (5.10.2), unless
one of the following conditions is satisfied

(7.10.3) λ = µ and σ = λ ∪ {ν} for some ν ∈ Λ \ λ
(7.10.4) µ = λi for some i = 0, 1, . . . , k and σ = λ.

For the case of (7.10.3), the restriction of the morphism (7.10.1) on the direct summand (7.10.2)
coincides with the morphism

(−1)k((eλ∧)−1(eν∧)−1)⊗ γ(Yλ, Yλ∪{ν})[−1− 2k]

by (4.4.1), by Lemma 2.7 and by Proposition 4.5. For the case of (7.10.4), the restriction of the
morphism (7.10.1) on the direct summand (7.10.2) coincides with the morphism

(−1)i(eλ∧)−1 ⊗ id = ((eλi∧)−1(eλ(i)∧)−1)⊗ id

by Lemma 2.7.
Hence, on the direct summand

ε(λ ∪ {ν})⊗Z H2n−2−2k(Yλ∪{ν},ΩYλ∪{ν})

for λ ∈ Λk+1,◦ and for some ν ∈ Λ \λ, the restriction of the morphism ΘC,0d1 coincides with the
morphism

ε(k)((k + 1)!)−1
(
2π
√
−1
)k

(−1)k((eλ∧)−1(eν∧)−1)⊗
∫
Yλ

H2n−2−2k(Yλ, γ(Yλ, Yλ∪{ν}))

+ (k + 2)ε(k + 1)((k + 2)!)−1
(
2π
√
−1
)k+1

((eλ∧)−1(eν∧)−1)⊗
∫
Yλ∪{ν}

= ε(k + 1)((k + 1)!)−1
(
2π
√
−1
)k

((eλ∧)−1(eν∧)−1)

⊗
(∫

Yλ

H2n−2−2k(Yλ, γ(Yλ, Yλ∪{ν})) +
(
2π
√
−1
) ∫

Yλ∪{ν}

)
,

which turns out to be zero because of Proposition 4.3. �
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Definition 7.11. By Proposition 7.9 and by Corollary 7.5, there exists the unique morphism

Tr : H2n(Y,KC) −→ C,

such that the diagram
ZC −−−−→ H2n(Y,KC)

ΘC|ZC

y yTr

C C
commutes, where the top horizontal arrow stands for the morphism in the exact sequence (7.5.1).
We call the morphism Tr the trace morphism for Y −→ ∗.

Proposition 7.12. The morphism Tr is defined over Q, that is, we have

Tr(H2n(Y,KQ)) ⊂ Q

under the identification H2n(Y,KQ)⊗Q C ' H2n(Y,KC) by H2n(Y, ψ).

Proof. It suffices to prove the inclusion

ΘC,0H2n(Y,GrδW0 ψ0)(E0,2n
1 (C(KosY•(MY•)), δW )) ⊂ Q (7.12.1)

by the commutative diagram (5.6.1) and by the equality (7.8.1). Since the morphism GrδW0 ψ0

is identified with the morphism induced by the inclusion(
2π
√
−1
)−d(λ)

ι : Q −→ C

on the direct summand ε(σ) ⊗Z ΩYλ∪σ [−2d(λ)] for λ ∈
∏◦

Λ under the identifications (5.10.1)
and (5.10.2), we can easily obtain the inclusion (7.12.1) as desired. �

Definition 7.13. We define a pairing

QK : Hq(Y,KC)⊗C H2n−q(Y,KC) −→ C

by setting

QK = Tr ·Hq,2n−q(Y,ΦC),

that is, QK(x⊗ y) = Tr(x ∪ y) for x ∈ Hq(Y,K) and y ∈ H2n−q(Y,K).

Lemma 7.14. We have the property, for all q,

QK(Hq(Y,KQ)⊗Q H2n−q(Y,KQ)) ⊂ Q.

Proof. Easy from Proposition 7.12. �

Lemma 7.15. We have

QK(y ⊗ x) = (−1)qQK(x⊗ y)

for x ∈ Hq(Y,K) and for y ∈ H2n−q(Y,K).

Proof. Easy by Lemma 6.17. �

Lemma 7.16. For the morphism of mixed Hodge structures NK in (5.16.1), the equality

QK(NK(x)⊗ y) +QK(x⊗NK(y)) = 0

holds for every x ∈ Hq(Y,K), y ∈ H2n−q(Y,K).

Proof. We have

Hp,q(Y,Φ)(NK ⊗ id + id⊗NK) = NK ·Hp,q(Y,Φ)

by Lemma 6.7. On the other hand, NK = 0 on H2n(Y,K) by Lemma 7.4. �
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Lemma 7.17. We have, for all p,

QK(F pHq(Y,K)⊗C F
n−p+1H2n−q(Y,K)) = 0.

Proof. Easy by (6.16.2) and by the conclusion on F in Lemma 7.4. �

Lemma 7.18. We have

QK(WaHq(Y,K)⊗WbH
2n−q(Y,K)) = 0

if a+ b ≤ −1.

Proof. We easily obtain the conclusion from the property (6.16.1) and from the fact

W−1H2n(Y,K) = 0

in Lemma 7.4. �

Definition 7.19. By the lemma above, the morphism QK induces the morphism

GrWm Hq(Y,K)⊗GrW−m H2n−q(Y,K) −→ C

which is denoted by GrWm,−mQK for m, q.

Lemma 7.20. For x ∈ GrWm Hq(Y,K), y ∈ GrW−m H2n−q(Y,K), we have

GrWm,−mQK(Cx⊗ Cy) = GrWm,−mQK(x⊗ y),

where C’s denote the Weil operators on GrWm Hq(Y,K) and GrW−m H2n−q(Y,K) which are the
Hodge structures of weight m+ q and 2n−m− q respectively.

Proof. The Weil operator on the Hodge structure GrW0 H2n(Y,K) of weight n coincides with the
identity by Lemma 7.4. Then we can easily see the conclusion from the fact that ∪ is a morphism
of mixed Hodge structures. �

8. Main results

8.1. Let Y −→ ∗ be a log deformation. We assume

(8.1.1) Y is projective,

together with condition (7.1.1). We fix an ample invertible sheaf L on Y .

8.2. The morphism
dlog : O∗Y −→W0ωY [1]

is defined by sending a local section f ∈ O∗Y to df/f ∈ Ω1
Y = W0ω

1
Y . We note that the image of

the morphism dlog is contained in F 1ωY [1].
On the other hand, we have the morphism

O∗Y −→ Γn−1(OY )⊗Q O∗Y = KosY (O∗Y ;n)1

which sends a local section f ∈ O∗Y to (n− 1)!1[n−1] ⊗ f ∈ Γn−1(OY )⊗Q O∗Y . Then we obtain a
morphism of complexes

O∗Y −→ KosY (O∗Y )[1] = W0 KosY (MY )[1]

denoted by dlogQ. The diagram

O∗Y
dlogQ−−−−→ W0 KosY (MY )[1]∥∥∥ y(2π√−1

)
ψ(Y,MY )[1]

O∗Y −−−−→
dlog

W0ωY [1]

(8.2.1)
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is commutative by definition.

Definition 8.3. We set

cQ(L) = H1(Y,dlogQ)([L]) ∈ H2(Y,W0 KosY (MY ))

cC(L) = H1(Y, dlog)([L]) ∈ H2(Y,W0ωY )

where [L] denotes the isomorphism class of L in H1(Y,O∗Y ). Moreover, we set

cK,Q(L) = H2(Y, a∗)(cQ(L)) ∈ H2(Y,KQ)

cK,C(L) = H2(Y, a∗)(cC(L)) ∈ H2(Y,KC),

where a∗ denotes the restriction of the morphism a∗ : KosY (MY ) −→ KQ (resp. a∗ : ωY −→ KC)
to the subcomplex W0 KosY (MY ) ⊂ KosY (MY ) (resp. W0ωY ⊂ ωY ).

Lemma 8.4. We have the following :

(8.4.1) cK,Q(L) ∈W0H2(Y,KQ)

(8.4.2) cK,C(L) ∈W0H2(Y,KC) ∩ F 1H2(Y,KC)

(8.4.3) cK,C(L) =
(
2π
√
−1
)
H2(Y, ψ)(cK,Q(L))

Proof. The first two properties are easily seen by the definition of cK,Q(L) and cK,C(L). The
equality

cC(L) =
(
2π
√
−1
)
H2(Y, ψ(Y,MY ))(cQ(L)),

is obtained by the commutative diagram (8.2.1). Then the third equality follows the commutative
diagram in (5.7.2). �

Definition 8.5. For every q, morphisms

lK,Q : Hq(Y,KQ) −→ Hq+2(Y,KQ)

lK,C : Hq(Y,KC) −→ Hq+2(Y,KC)

are defined by

lK,Q(x) = −cK,Q(L) ∪ x = −H2,q(Y,ΦQ)(cK,Q(L)⊗ x)

lK,C(y) = −cK,C(L) ∪ y = −H2,q(Y,ΦC)(cK,C(L)⊗ y)

for x ∈ Hq(Y,KQ) and for y ∈ Hq(Y,KC).

Lemma 8.6. The diagram

Hq(Y,KQ)
lK,Q−−−−→ Hq+2(Y,KQ)

Hq(Y,ψ)

y y(2π√−1
)

Hq+2(Y,ψ)

Hq(Y,KC) −−−−→
lK,C

Hq+2(Y,KC)

is commutative. Moreover we have, for every a,m,

lK,Q(WmHq(Y,KQ)) ⊂WmHq+2(Y,KQ)

lK,C(WmHq(Y,KC)) ⊂WmHq+2(Y,KC)

lK,C(F aHq(Y,KC)) ⊂ F a+1Hq+2(Y,KC).

Proof. Easy from the properties of ΦQ and ΦC. �
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Definition 8.7. The lemma above implies that the pair of the morphism

lK = (lK,Q,
(
2π
√
−1
)−1

lK,C)

defines a morphism of mixed Hodge structures

lK : (Hq(Y,K),W [q], F ) −→ (Hq+2(Y,K),W [q], F [1])

for every q.

Lemma 8.8. We have x ∪ lKy = lKx ∪ y = lK(x ∪ y) for x ∈ Hp(Y,K), y ∈ Hq(Y,K).

Proof. Easy by Lemma 6.15, by Lemma 6.17 and by the fact cK,C(L) ∈ H2(Y,K). �

Lemma 8.9. We have lKNK = NK lK on Hq(Y,K) for all q.

Proof. Lemma 6.7 tells us the equality

NK(cK,C(L)) ∪ x+ cK,C(L) ∪NK(x) = NK(cK,C(L) ∪ x)

for x ∈ Hq(Y,K). Because a∗ : ωY −→ KC factors through the subcomplex C(ωY•) by definition,
we have NK(cK,C(L)) = 0. Thus we have

cK,C(L) ∪NK(x) = NK(cK,C(L) ∪ x)

as desired. �

Definition 8.10. We set

Li,jQ = GrW−i Hn+j(Y,KQ), Li,jC = GrW−i Hn+j(Y,KC)

and
Li,j = (Li,jQ , Li,jC )

for every i, j. Note that Li,j is a Hodge structure of weight n+ j − i. Then

LQ =
⊕
i,j

Li,jQ , LC =
⊕
i,j

Li,jC

is a pair of a finite dimensional Q-vector space and a C-vector space such that LQ ⊗Q C ' LC.
Moreover, a morphism

〈 〉 : L⊗C L −→ C
is defined by

〈x⊗ y 〉 =

{
ε(j − n) GrWi,−iQK(x⊗ y) if x ∈ L−i,−j , y ∈ Li,j

0 otherwise,

which turns out to be a morphism defined over Q, that is, 〈x⊗ y 〉 ∈ Q if x⊗ y ∈ LQ ⊗Q LQ.

Theorem 8.11. The data (L,NK , lK , 〈 〉) is a bigraded polarized Hodge-Lefschetz module in the
sense of Guillén-Navarro Aznar [11, (4.1)-(4.3)].

Proof. We have

GrW−i Hn+j(Y,KC) = Ei,n+j−i
2 (KC,W ) ' Ei,n+j−i

2 (AC,W )

by Corollary 5.30. Then L underlies a bigraded polarized Hodge-Lefschetz module by [11,
(4.5)Théorème, (5.1)Théorème]. Therefore it is sufficient that our data NK , lK , 〈 〉 coincide with

the data 2π
√
−1N,

(
2π
√
−1
)−1

l,
(
2π
√
−1
)n
ψ used in [11, (5.1)Théorème]. (Our definition of

the differential of A in 5.17 is different from that in [11, (2.4)]. However, we can apply the
results in [11] because this difference only affects the sign of the morphism d1 : Ep,q1 (A,W ) −→
Ep+1,q

1 (A,W ).)
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The morphism

NA : Ep,q1 (AC,W ) −→ Ep+2,q−2
1 (AC,W )

coincides with the morphism
(
2π
√
−1
)
N because these two morphisms are induced by the same

morphism
(
2π
√
−1
)
νC. Thus NK on L coincides with

(
2π
√
−1
)
N under the identification above.

Lemma 6.20 and Lemma 6.21 tell us that cup product with cK,C(L) on L is induced by the usual
cup product on Yσ with a∗σ(cK,C(L)). Since a∗σ(cK,C(L)) coincides with c′1(a∗σL) in Deligne [5,

(2.2.4.1)], the morphism lK on L coincides with
(
2π
√
−1
)−1

l.
We have

ΘCHn−j,n+j(Y,GrWi,−i ΨC) = ΘC,0Hn−j,n+j(Y,GrWi,−i ΨC,0)

by the equality (6.10.1). Therefore we have

ΘCHn−j,n+j(Y,GrWi,−i ΨC)

=
∑

λ∈
∏◦ Λ

ε(d(λ))(|λ|!)−1
(
2π
√
−1
)d(λ)

∫
Yλ

Hn−j,n+j(Y,ΘC,0(λ)[1] GrδW0 C(dlog t∧) GrWi,−i ΨC,0)

by definition. On the direct summand

(ε(λ)⊗Z Hn−j−i−2r(Yλ,ΩYλ))⊗C (ε(λ)⊗Z Hn+j−i−2r(Yλ,ΩYλ))

' ε(λ)⊗Z ε(λ)⊗Z Hn−j−i−2r(Yλ,ΩYλ)⊗C Hn+j−i−2r(Yλ,ΩYλ)

of Hn−j(Y,GrWi AC)⊗C Hn+j(Y,GrW−iAC) for λ ∈ Si+2r+1(Λ), we have

ΘCHn−j,n+j(Y,GrWi,−i ΨC)

= (−1)r+(n−j)i|λ|!ε(|λ| − 1)(|λ|!)−1
(
2π
√
−1
)|λ|−1

∫
Yλ

(ϑ(λ)⊗ ∪)

= (−1)(n−j)iε(i)
(
2π
√
−1
)i+2r

∫
Yλ

(ϑ(λ)⊗ ∪)

by Lemma 6.13, where ∪ in the equalities above denotes the product of the usual de Rham
cohomology of Yλ. On the other direct summands, we have

ΘCHn−j,n+j(Y,GrWi,−i ΨC) = 0

by Lemma 6.13 again. Identifying ε(λ) ⊗Z ε(λ) and Z by the canonical isomorphism ϑ(λ), we

conclude that the pairing 〈 〉 coincides with
(
2π
√
−1
)n
ψ by using the equality

(−1)(n−j)iε(j − n)ε(i) = ε(i+ j − n).

�

Corollary 8.12. For every i ≥ 0 and for every q

N i
K : (GrWi Hq(Y,K), F ) −→ (GrW−i Hq(Y,K), F [−i])

are isomorphisms of Hodge structures of weight i+ q. Moreover,

ljK : (Hn−j(Y,K),W [n− j], F ) −→ (Hn+j(Y,K),W [n− j], F [j])

is an isomorphism of mixed Hodge structures for every j ≥ 0.
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Definition 8.13. We set

Hj(Y,K)prim = Ker(ln−j+1
K : Hj(Y,K) −→ H2n−j+2(Y,K))

for j ≤ n. Then a morphism NK : Hj(Y,K)prim −→ Hj(Y,K)prim is induced by Lemma 8.9.
Moreover, we define a pairing

Sj,prim : Hj(Y,K)prim ⊗Hj(Y,K)prim −→ C
by

Sj,prim(x⊗ y) = ε(j)QK(x⊗ ln−jK y)

for x, y ∈ Hj(Y,K)prim.

Theorem 8.14. For j ≤ n, the data

(Hj(Y,K)prim,W [j], F,NK , Sj,prim)

is a polarized mixed Hodge structure over Q in the sense of Cattani-Kaplan-Schmid [2, Definition
(2.26)].

Proof. Lemma 7.2 implies

W−j−1Hj(Y,K) = 0 and WjH
j(Y,K) = Hj(Y,K).

Therefore N j+1
K = 0. From (5.16.1), we have, for all p,

NK(F pHj(Y,K)prim) ⊂ F p−1Hj(Y,K)prim.

Since
ln−j+1
K : (Hj(Y,K),W [j], F ) −→ (H2n−j+2(Y,K),W [j], F [n− j + 1])

is a morphism of mixed Hodge structures, (Hj(Y,K)prim,W [j], F ) is a mixed Hodge structure.
Moreover, the sequences

0 −−−−→ GrWm Hj(Y,K)prim −−−−→ GrWm Hj(Y,K)
ln−j+1
K−−−−→ GrWm H2n−j+2(Y,K)

are exact for all m. Therefore, we have

GrWm Hj(Y,K)prim = Ker(ln−j+1
K : L−m,j−n −→ L−m,n−j+2) (8.14.1)

for all m. The commutativity of NK and lK induces the commutative diagram

0 −−−−→ GrWi Hj(Y,K)prim −−−−→ GrWi Hj(Y,K)
ln−j+1
K−−−−→ GrWi H2n−j+2(Y,K)

NiK

y yNiK yNiK
0 −−−−→ GrW−i Hj(Y,K)prim −−−−→ GrW−i Hj(Y,K) −−−−→

ln−j+1
K

GrW−i H2n−j+2(Y,K),

which shows that the morphism

N i
K : GrWi Hj(Y,K)prim −→ GrW−i Hj(Y,K)prim

is isomorphism for i ≥ 0. Therefore W [j] = W (NK)[j] as desired.
Take elements x, y ∈ Hj(Y,K)prim. We have

Sj,prim(y ⊗ x) = ε(j)QK(y ⊗ ln−jK x) = ε(j)QK(ln−jK y ⊗ x)

= ε(j)(−1)jQK(x⊗ ln−jK y) = (−1)jSj,prim(x⊗ y)

by Lemma 7.15 and by Lemma 8.8. Moreover, we can easily check

Sj,prim(NKx⊗ y) + Sj,prim(x⊗NKy) = 0

by the commutativity of NK and lK and by Lemma 7.16.
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If x ∈ F pHj(Y,K), y ∈ F j−p+1Hj(Y,K), Lemma 7.17 implies QK(x ⊗ ln−jK y) = 0 because

ln−jK y ∈ Fn−p+1H2n−p(Y,K). Thus we obtain, for all p,

Sj,prim(F pHj(Y,K)prim ⊗ F j−p+1Hj(Y,K)prim) = 0.

Now we set

Pi = Ker(N i+1
K : GrWi Hj(Y,K)prim −→ GrW−i−2 Hj(Y,K)prim)

for every i ≥ 0, which is a Hodge structure of weight i+ j. Then we have

Pi = L−i,j−n ∩Ker(N i+1
K ) ∩Ker(ln−j+1

K )

for every i ≥ 0 by (8.14.1).
By the definition of polarization of bigraded Hodge-Lefschetz module in [11, (4.3)], we have

〈x⊗ CN i
K l

j
Kx 〉 > 0

for x ∈ L−i,−j ∩ Ker(N i+1
K ) ∩ Ker(lj+1

K ) with x 6= 0, where C denotes the Weil operator on the
Hodge structure Li,j . For x ∈ Pi ⊂ L−i,j−n with x 6= 0, we have

Sj,prim(Cx⊗N i
Kx) = ε(j)QK(Cx⊗ ln−jK N i

Kx)

= ε(j)(−1)i+jQK(x⊗ Cln−jK N i
Kx)

= (−1)jε(j)ε(−j) 〈x⊗ CN i
K l

n−j
K x 〉

= ε(j + 1)ε(j + 1) 〈x⊗ CN i
K l

n−j
K x 〉

= 〈x⊗ CN i
K l

n−j
K x 〉 > 0

as desired. �

8.15. Now the standard procedure (e.g. [18, Example 2.10]) gives us a polarization of the mixed
Hodge structure (Hq(Y,K),W [q], F ) as follows.

We have a direct sum decomposition

(Hq(Y,K),W [q], F ) =
⊕
j≥0

ljK(Hq−2j(Y,K)prim,W [q], F [−j]) for q ≤ n

(Hq(Y,K),W [q], F ) =
⊕
j≥0

lq−n+j
K (H2n−q−2j(Y,K)prim,W [q], F [n− q − j]) for q ≥ n

by Corollary 8.12 and by the fact that lK is a morphism of mixed Hodge structures.
For the case of q ≤ n, we define

Sq(x⊗ y) =
∑
j≥0

Sq−2j,prim(xj ⊗ yj),

where x =
∑
j≥0 l

j
Kxj and y =

∑
j≥0 l

j
Kyj for some xj , yj ∈ Hq−2j(Y,K)prim.

For the case of q ≥ n, we set

Sq(x⊗ y) =
∑
j≥0

S2n−q−2j,prim(xj , yj),

where x =
∑
j≥0 l

q−n+j
K xj and y =

∑
j≥0 l

q−n+j
K yj for some xj , yj ∈ H2n−q−2j(Y,K)prim.

Theorem 8.16. The data
(Hq(Y,K),W [q], F,NK , Sq)

is a polarized mixed Hodge structure over Q in the sense of Cattani-Kaplan-Schmid [2, Definition
(2.26)].
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