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DEGENERATIONS OF INVARIANT LAGRANGIAN MANIFOLDS

MAURICIO GARAY

Abstract. We consider a pair (H, I) where I is an involutive ideal of a Poisson algebra and
H ∈ I. We show that if I defines a “2n-gon singularity” then, under arithmetical conditions
on H, any deformation of H can be integrated as a deformation of (H, I).

In memoriam V.I. Arnold.

Introduction

Let us consider a real analytic Hamiltonian system in the neighbourhood of an elliptic critical
point in R2n:

H =

n∑
i=1

αiτi + o(‖τ‖)

with τi := p2
i + q2

i , τ = (τ1, . . . , τn) and α1, . . . , αn ∈ R.
If the αi are Q-independent then, we may assume, up to a symplectic change of variable, that

H is of the form
H =

∑
i≥0

αiτi +
∑
ij

αijτiτj + o(‖τ‖2), αij ∈ R.

In 1963, Arnold investigated invariant tori for such a Hamiltonian system. He showed that
any neighbourhood of the critical point has a positive measure set of invariant tori provided that
the matrix (αij) is non-degenerate [2] (see also [1, 14, 18]).

Following Moser and Pöschel, one may look up for a parametric variant of Arnold’s theorem
regarding both the τi’s and the frequency as new variables [22]. In this paper, I will show a result
similar to the one proven by Arnold in this context (Theorem 3.3). The approach is however
slightly different from that of Arnold, since it depends on finding a KAM type normal form
at the singularity similar to the Birkhoff normal form in the formal case. The solution to the
Herman invariant tori conjecture is a consequence of this result [9].

The real structure will be treated as an arbitrary anti-holomorphic involution, in particular,
we will disregard the signature of the critical point. This means that the real parts of our
complex invariant Lagrangian manifolds can be either n-dimensional tori or diffeomorphic to
cylinders over some torus of dimension less than n.

The parametric variant of the KAM theorem was first introduced to simplify the proof using
the fact that the parametric statement is equivalent to the original one. For degenerations, this
is no longer the case and the difference can already be seen in the integrable case. The family
of Lagrangian submanifolds

Lε = {(q, p) ∈ C2n : p2
1 + q2

1 = ε1, . . . , p
2
n + q2

n = εn},

degenerates into a cone over a polytope with n vertices. Vey’s theorem states that all integrable
Hamiltonian system having this degeneration are isomorphic [25]. However, this theorem does
not guarantee the stability for arbitrary Lagrangian deformations. A first attempt to prove
this more general theorem was made by Nguyen D’uc and Pham, but they mistakenly used

http://dx.doi.org/10.5427/jsing.2014.8e
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Mather’s preparation theorem in their proof [13, 16]. The differential relations involved in the
definition of a Lagrangian manifolds do not permit to apply directly Mather-Thom theory. Using
Sevenheck-van Straten’s Lagrangian deformation complex, I was able to prove the stability of
the deformation (Lε) among Lagrangian deformations [7, 23] (see also [24]).

The result of this paper shows that not only the deformation (Lε) is stable among Lagrangian
singularities but that it is also stable as a degeneration of invariant Lagrangian manifolds in a
Hamiltonian system.

Acknowledgements. I thank the referee for accurate remarks and suggestions on the text.

1. Lagrangian deformations

Deformations of Poisson algebras is a well established subject going back to the work of
Lichnerowicz [15].

Let A be an algebra over C. We say that A is a Poisson algebra if it is endowed of a linear
antisymmetric biderivation

A×A −→ A, (f, g) 7→ {f, g}
which satisfies the Jacobi identity. The tensor product of a Poisson algebra A with an algebra
B is a Poisson algebra for the bracket:

{a1 ⊗ b1, a2 ⊗ b2} := {a1, a2} ⊗ (b1b2).

It is called the central extension of A with respect to B and we say that A is a Poisson algebra
over B. In the sequel, if A has a Poisson structure, then we implictly consider A⊗B with this
central-extension Poisson structure.

The most standard examples of Poisson algebras over C are the algebras of polynomials C[q, p],
formal power series C[[q, p]] and analytic power series C{q, p} in the 2n variables

q = (q1, . . . , qn), p = (p1, . . . , pn)

together with the symplectic Poisson structure

{f, g} =

n∑
i=1

∂qif∂pig − ∂qig∂pif.

In this paper, we will only be concerned with central extensions of symplectic structures.
An ideal I of a Poisson algebra is called involutive if:

{I, I} ⊂ I.
and we consider flat deformations of involutive ideals inside Poisson algebra.

So if f1, . . . , fn generates an involutive ideal I then there exists ckij ∈ A such that

{fi, fj} =
∑
k≥0

ckijfk.

In practise, our ideals are complete intersection ideals, thus flat involutive deformations are
simply deformations of functions generating the ideal which remain in involution.

If we start from a Liouville integrable system f1, . . . , fn ∈ C[q, p], the parametric point of view
consists in replacing f by the involutive ideal I in A := C[q, p]⊗C[τ ], τ = (τ1, . . . , τn) generated
by the fi − τi’s.

Let now B be an algebra and consider the Poisson algebra A⊗B. Let I be an involutive flat
deformation of I over B. We say that it is a trivial Poisson deformation if there exists a Poisson
automorphism ϕ ∈ Aut (A⊗B) such that

ϕ(I) = I ⊗ 1.
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We say that I is rigid over B if any of its deformation over B is trivial.
These notions extend naturally from polynomial rings to analytic ones. Let us denote by

OCk,0 or by C{x} when we want to single out the variables, the algebra of convergent power
series in the variable x = (x1, . . . , xk).

This algebra has a natural topological structure as direct limit of Banach spaces (see [11]).
Because the algebra OCk,0 ⊗ OCl,0 is not isomorphic to OCk+l,0, in the sequel, we consider topo-
logical tensor products rather than usual tensor products (see [12]). As both OCk,0⊗̂OCl,0 and
OCk+l,0 are completions of the space of polynomials, they are isomorphic.

Similarly, if X and Y are compact spaces, by Stone theorem, multiplication gives an isomor-
phism of topological vector spaces between C0(X,R)⊗̂C0(Y,R) and C0(X × Y,R). These are
the only properties of topological tensor products that we shall need and can be taken as a
definition, if the reader is not comfortable with this notion.

Although deformation theory of involutive ideals in Poisson algebras can be established in
great generality, only a few examples are understood. We now give the simplest non-trivial case.

Theorem 1.1 ([7], [13]). Let us consider the ring of analytic power series in 2n-variables C{q, p}
together with its symplectic Poisson structure. The involutive ideal of C{τ, q, p} generated by the
polynomials p1q1 − τ1, . . . , pnqn − τn is rigid over C{t1, . . . , tk} for any k ≥ 0.

In concrete terms, if we take convergent power series

F1, . . . , Fn ∈ C{t, τ, q, p}

with Fi(t = 0, τ, q, p) = piqi − τi that generate an involutive ideal then there exists a Poisson
automorphism

ϕ : C{t, τ, q, p} −→ C{t, τ, q, p}
such that ϕ(F1)

. . .
ϕ(Fn)

 = M

p1q1 − τ1
. . .

pnqn − τn


where M is an invertible n× n matrix with coefficients in C{t, τ, q, p}.

As shown by Miranda and Vu Ngoc, the analoguous statement is wrong in the C∞ cate-
gory [17].

2. Invariant Lagrangian ideals

KAM theory involves complicated algebras of functions over Cantor sets, so it is useful to have
a formal point of view on symplectic and Poisson geometry which allows to deal with formal
varieties and nilpotents.

Let A be a Poisson algebra over an algebra B. For any involutive ideal I ⊂ A and any element
H ∈ I, we have a derivation

A/I −→ A/I, f 7→ {H, f}
and this derivation is unchanged if we add an element of I2:

{H +

k∑
i=1

aibi, f} = {H, f}+

k∑
i=1

ai{bi, f}+

k∑
i=1

bi{ai, f} = {H, f} (mod I)

for any a1, . . . , ak, b1, . . . , bk ∈ I. This shows that the conormal ideal I/I2 is mapped to the
derivations of A/I via the mapping

I/I2 −→ Der (A/I), H 7→ {H,−}.
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More generally, if {H, I} ⊂ I then we say that I is H-invariant. The derivation {H,−} ∈
Der (A/I) is then defined by the class of H modulo the vector space I2 ⊕ B. In case, A is
polynomial algebra, any H-invariant involutive ideal defines a family of invariant varieties for H
parametrised by B but the notion is more general and holds for any Poisson algebra.

The simplest case of an invariant ideal is the ideal generated by H itself which corresponds to
the conservation of energy. On the other extreme, if we start from a Liouville integrable system

H = f1, f2, . . . , fn ∈ C[q, p], {fi, fj} = 0,

then the ideal I generated by the fi − τi’s in A := C[τ, q, p] is H-invariant and we get a commu-
tative diagram where vertical arrows are isomorphisms

A/I
{H,·} //

��

A/I

��
C[q, p]

{H,·} // C[q, p]

From the parametric point of view, such an integrable system is a Lagrangian scheme over
Spec (C[τ ]). In a joint work with van Straten, we used this formulation to unify Arnold-Liouville-
Mineur theorems with Darboux-Weinstein ones [10]

Let us consider the case where A is the ring of formal power series C[[t, τ, q, p]] in 4n-variables
with t = (t1, . . . , tn). We use the grading where the degrees are:

deg(qi) = deg(pi) = 1, deg(τi) = 2, deg(ti) = 0

together with the associated filtration. We write f = g + o(k) if f − g contains only terms of
degree higher than k. If f = o(k) we say that it is of order k. We will also use the notation
P ≺ k if P ∈ C[t, τ, q, p] is a polynomial of weighted homogeneous degree less than k and P < k
if it is of order at least k.

Note that the derivations of a ring graded by integers

A =
⊕
i∈N

Ai

is a graded module: a derivation v is homogeneous of degree k if it maps Ai to Ai+k. Similarly
the derivations of a filtred ring

A = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . .
is a filtred module: a derivation v is of order k if it maps F i to F i+k.

Given a ring of formal power series A = C[[x]], the exponential gives a mapping from the
space of derivations, which vanish at the origin, to that of automorphisms. In case, the series is
convergent it can be interpreted as the time one flow of the corresponding vector field.

If A is now a Poisson algebra, then the Hamiltonian derivations, i.e., the derivations which
preserve the Poisson bracket, are mapped to Poisson mappings.

Proposition 2.1. Let H ∈ C[[t, τ, q, p]] be such that

H(t, τ, q, p) =

n∑
i=1

(αi + ti)piqi + o(2), αi ∈ C

If the αi’s are linearly independent over Q then there exists a sequence of polynomial Hamiltonian
derivations u = (uk) of the form

uk = {−, hk}+

k∑
i=1

gki (t, τ)∂ti
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with 2k 4 uk ≺ 2k+1 such that the sequence

Hk+1 = e−ukHk, H0 = H

is of the form

Hk =

n∑
i=1

(αi + ti)piqi + o(2k+1 + 1)(mod I2 ⊕ C[[t, τ ]])

where I ⊂ C[[t, τ, q, p]] is the ideal generated by p1q1 − τ1, . . . , pnqn − τn.

Proof. Write

H =

n∑
i=1

(αi + ti)piqi +Rk + o(2k+1 + 1), Rk ∈ C[[t, τ, q, p]].

with 2k + 2 4 Rk 4 2k+1 + 1. We prove the proposition by induction on k.
As the αi’s are linearly independent, we may find a Hamiltonian derivation

uk =

n∑
i=1

ai∂ti + {F,−}, ai ∈ C[[t, τ ]],

with 2k 4 uk ≺ 2k+1, and S ∈ I2 ⊕ C[[t, τ ]] such that:

uk

(
n∑
i=1

(αi + ti)piqi

)
= Rk + S.

As uk is Hamiltonian, the automorphism e−uk is a Poisson automorphism and

e−ukH =

n∑
i=1

(αi + ti)piqi + S + o(2k+1 + 1).

This proves the proposition. �

The proposition implies that any power series H ∈ C[[t, τ, q, p]] of the form
n∑
i=1

(αi + ti)piqi + o(2)

with [Q(α1, . . . , αn) : Q] = n admits an invariant ideal of dimension n over C[[t, τ ]] generated
by power series of the form piqi − τi + o(2), i = 1, . . . , n. Thus the Hamiltonian system admits
a family of formal Lagrangian varieties parametrised by C[[t, τ ]].

Our main result is an analytic variant of this proposition. Due to Poincaré non-integrability
theorem [20], it is hopeless to search for an analytic family so, as usual in KAM theory, we search
for a family parametrised by some closed subset of positive measure.

Before proceeding to KAM theory, let us observe that the above proposition is a parametric
variant of the Birkhoff normal form. Indeed, if H is reduced to its Birkhoff normal form:

H = B(p1q1, . . . , pnqn), B ∈ C[[X1, . . . , XN ]].

Consider the natural embedding of algebras

ϕ : C[[q, p]] −→ C[[τ, q, p]].

By Taylor’s formula we have

ϕ(H) =

n∑
i=1

∂τiB(τ1, . . . , τn)piqi mod (I2 ⊕ C[[τ ]])
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or equivalently

ϕ(H) =

n∑
i=1

(αi + ti)piqi mod (I2 ⊕ C[[τ ]])

with ti = ∂τiB(τ) − ∂τiB(0). Via the identification C[[τ, q, p]]/I ≈ C[[q, p]], we get an equality
between Hamiltonian derivations

{−, H} = {−,
n∑
i=1

(αi + ti)piqi}.

3. Statement of the theorem

We first define arithmetic classes.
Denote by (·, ·) the Euclidean scalar product in Cn. For any vector α ∈ Cn, we define the

sequence σ(α) by:
σ(α)k := min{|(α, i)| : i ∈ Zn \ {0}, ‖i‖ ≤ 2k}.

Definition 3.1. The arithmetic class in Cn associated to a real decreasing sequence a = (ak) is
the set

C(a) := {α ∈ Cn : ∀k ≥ 0, σ(α)k ≥ ak}.

Although the arithmetic class depends on the dimension n, we do not specify it in our no-
tation. Locally an arithmetic class might have zero measure around some point, the following
elementary result provides a useful criterion to guarantee the construction of positive measure
sets of invariant Lagrangian manifolds:

Proposition 3.2 ([8]). Consider a real positive decreasing sequence a = (ak) and let ρ = (ρk)
be a real positive sequence such that (2knρn−1

k ) is summable. The density of the set C(ρa) is
equal to 1 at any point of C(a).

For a locally closed subset X ⊂ Cn and a given l ∈ N ∪ {∞}, we denote by ClX the sheaf of
complex valued Whitney Cl functions on X [26]. As any direct limit of locally convex vector
spaces, the stalk of ClX at a point is a locally convex space [4, 11]. There is a natural restriction
mapping

r : OCn −→ C∞X .

If E,F are topological vector spaces, we denote by L(E,F ) the space of bounded linear
mappings endowed with the strong topology.

We denote by Dk
r ⊂ Ck the polydisk of polyradius r centred at the origin, and by OCk the

sheaf of holomorphic function on Ck. The main result of this paper is the following KAM version
of Proposition 2.1:

Theorem 3.3. Let I ⊂ C{τ, q, p}⊗̂OCn,α be the involutive ideal generated by the piqi− τi’s and
consider a holomorphic function of the type

H =

n∑
i=1

(αi + ti)piqi + o(2) ∈ C{τ, q, p}⊗̂OCn,α.

There exists a sequence of polynomial Hamiltonian derivations u = (uk) with 2k−1 4 uk ≺ 2k

depending only on H with the following property. For any decreasing positive sequence a = (ai)
such that ∑

i≥0

log ai
2i

> −∞

and α ∈ Cn;
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1) the sequence ϕk = (euk . . . eu0) is well-defined and converges in

L(C{τ, q, p}⊗̂OCn,α, C{τ, q, p}⊗̂C∞X,α)

to a Poisson morphism ϕ such that

ϕ(H) =

n∑
i=1

(αi + ti)piqi (mod (r(I2)⊕ C{τ}⊗̂C∞X,α);

2) if f is holomorphic in (α+Dn
r )×D3n

r then ϕ(f) ∈ OC3n(D3n
s )⊗̂C∞X,α(Dn

s ∩ C(a)) with

s = 2−10n−40

∏
i≥0

a2−i

i

5

r;

3) if H is real for some antiholomorphic involution then u can also be chosen real.

Note that the condition ∑
i≥0

log ai
2i

> −∞

ensures that
∏
i≥0 a

2−i

i is finite.
The sequence uk will be constructed explicitly. The theorem implies that the ideal r(I) is

invariant for ϕ(H). In particular, the Hamiltonian flow of a representative of H admits a family
of invariant Lagrangian manifolds parametrised by a neighbourhood of (0, α) ∈ Cn× C(a). This
set might of course be empty and there are additional conditions, such as Proposition 3.2, under
which it will have positive measure.

Regularity results show that it is sufficient to prove the variant of the theorem where we
replace C∞X,α by C0

X,α (see Appendix).
If we start with a real analytic function H having an elliptic critical point at the origin, the

real parts of these invariant Lagrangian manifolds define a family of n-dimensional tori which
degenerate. In other words, any representative of

H =

n∑
i=1

(αi + ti)(p
2
i + q2

i ) + o(2) ∈ C{t, τ, q, p}

admits a positive measure set of invariant tori if the vector (α1, . . . , αn) belongs to some arith-
metic class which satisfies the condition of the theorem. Note that if we assume H to be real
but not necessarily elliptic, the real parts of these complex invariant Lagrangian manifolds are
diffeomorphic to cylinders

Rj × (S1)k, j + k = n,

and k = n in the elliptic case.
In the formulation of the theorem, the fact that H depends, in first approximation, linearly

on t is similar to the isochronous non-degeneracy condition of the standard KAM theorem. As
we shall now see, the above theorem is a consequence of abstract KAM theory constructed in [6].

4. The category Kolmogorov spaces

Definition 4.1. An S-Kolmogorov space is a directed system of Banach spaces E = (Es, | · |s)
indexed by the interval ]0, S] such that the maps of the directed system are injective with norm
at most one.



DEGENERATIONS OF INVARIANT LAGRANGIAN MANIFOLDS 57

A graded morphism of S-Kolmogorov spaces

u : E −→ F

is a linear continuous map, which commutes with the morphisms of the directed systems, such
that for each t, there exists a unique φ(t) with

u(Et) ⊂ Fs
and the map φ is non-decreasing.

This means that for any t1 > t2 > 0, we have a commutative diagram of Banach spaces

Et1 //

u

��

Et2

u

��
Fs1 // Fs2

A morphism of Kolmogorov spaces is a finite sum of graded morphisms. This defines the category
of Kolmogorov spaces.

We extend the norm of Es to E as follows : for

x = x1 + · · ·+ xn ∈
⊕n

i=1
Eti ,

we define

|x|s :=

{
|ft1s(x1) + · · ·+ ftns(xn)|s if ti ≥ s, ∀i

+∞ otherwise.

Unless specific mention, we denote the norms in a Kolmogorov space by | · |s without specifying
the space E in the notation. For instance, given a map

u : E −→ F

we write |x|s and |u(x)|s rather than |x|E,s and |u(x)|F,s.
A Kolmogorov space E admits many types of decreasing filtrations. The most simple one,

that we will call the canonical filtration, is given by the vector subspaces

E(k) = {x ∈ E : ∃C, τ, |x|s ≤ Csk, ∀s ≤ τ}, k ∈ R≥0

which, as we shall see, is a generalisation of the filtration of the ring of convergent power series
by powers of its maximal ideal.

The following two definitions give an abstract form of differential operators.

Definition 4.2 ([6]). Let E,F be S-Kolmogorov spaces. A complete morphism is a family of
graded morphisms

uλ : E −→ F, λ ∈]0, 1[

such that we have commutative diagrams

Et

uλ

��

// Es

uλ

��
Fλt // Fλs

and
Et

uλ

��

uµ

!!
Fλt // Fµt
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for any s < t ≤ S and µ < λ.

We abusively write complete morphisms as morphisms and not as families: E u−→ F .

Definition 4.3 ([6]). Let E,F be Kolmogorov spaces. A complete morphism u is called k-
bounded if there exists a real number C > 0 such that:

|u(x)|s ≤
C

(t− s)k
|x|t, for any s < t ≤ S, x ∈ Et.

For simplicity, we will assume that, for k = 0, the condition also holds for s = t, so that u
maps Et to Ft. This assumption is unessential but it simplifies some of the notations.

We denote by Bk(E,F )τ the space of complete k-bounded morphisms from E[τ ] to F [τ ].
Let |u|τ the smallest constant C which satisfy the estimate in Definition 4.3 divided by e2:

|u|τ := sup{(t− s)k e
2|u(x)|s
|x|t

: s < t ≤ τ, x ∈ Et}.

The map
Bk(E,F )τ −→ R+, u 7→ |u|τ

defines a Banach space structure on Bk(E,F )τ . Moreover there is a natural restriction mapping

Bk(E,F )τ −→ Bk(E,F )σ, σ ≤ τ,

thus we have defined an S-Kolmogorov space denoted by Bk(E,F ) and called the space of k-
bounded morphisms [6].

5. The Kolmogorov spaces Cωn , Lp,ωn .

Definition of Cωn . For any open subset U ⊂ Cn, the space of holomorphic functions in U is
endowed with the topology of uniform convergence on compact subsets of U . If the open subset
U contains the origin, we get a restriction mapping

r : OCn(U) −→ OCn,0.

Such mappings induce a direct limit topology on OCn,0 (see [11] for details).
We now construct a smaller directed system of vector spaces having OCn,0 as limit. We denote

by (Cωn )s, s ∈]0, 1], the vector space of continuous functions in the polydisc

Ds := {z ∈ Cn : sup
i=1,...,n

|zi| ≤ s}

which are holomorphic in its interior

(Cωn )s = O(D̊s) ∩ C0(Ds,C).

The C0-norm
|f |s := sup

z∈Ds
|f(z)|

endows (Cωn )s of a Banach space structure. The inclusion Ds ⊂ Dt, t > s induces a directed
system

(Cωn )t −→ (Cωn )s

which forms a Kolmogorov space. This directed system is of course standard [5, 19]. On can
define in a similar way the Kolmogorov spaces Ck,ω by replacing continuous functions by k-
differentiable ones and taking the Ck-norm.
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Definition of Lp,ωn . We endow Cn ≈ R2n with the measure π−n/2dV where dV is the Euclidean
volume and consider the Kolmogorov spaces Lp,ωn :

(Lp,ωn )s := Γ(int (Ds),OCn) ∩ Lp(Ds,C)

with s ∈]0, 1].
For p = 2, each of these spaces has a Hilbert space structure defined by the hermitian form

(f, g) 7→ 1

πn

∫
Ds

f(z)ḡ(z)dV,

In this Kolmogorov space, the projection on a closed vector subspace is 0-bounded. We now
wish to extend this property to the Kolmogorov space Cωn .

Identity morphisms. As any continuous function on a compact set is integrable, we get a
canonical mapping:

I : Cωn −→ L2,ω
n , f 7→ f.

This mapping can be distinguished from the identity only because the source and target spaces
are different Kolmogorov spaces. The direct limit functor sends the map I to the identity map
of C{z}. A morphism or more generally a family of complete morphisms induced by restriction
mappings will be called an Identity morphism.

As (
1

πn

∫
Ds

|f(z)|2dV
)1/2

≤ sup
z∈Ds

|f(z)| sn,

this identity morphism I is 0-bounded and

|I|τ = τn.

In particular as τ ≤ 1, we have |I|τ ≤ 1.
Conversely, take a function f ∈ (L2,ω

n )t and s < t. As f is holomorphic inside the disk of
radius t, it is in particular continuous thus we have

f|Ds ∈ (Cωn )s.

Consequently the inclusions
Dλs ⊂ Ds, λ ∈]0, 1[

induce restriction mappings
(L2,ω

n )s −→ (Cωn )λs

and a family of complete morphisms

I−1 : L2,ω
n −→ Cωn

which is also an identity morphism.

Proposition 5.1. The identity morphism I−1 is 1-bounded of norm at most equal to one.

Proof. Take f ∈ (L2,ω
n )t, the Taylor expansion at w ∈ Ds with s < t gives

f(z) =
∑
j≥0

aj(z − w)j , aj ∈ C.

Now let Γw be the polydisk centred at w with radius σ = t− s. We have
1

πn

∫
Γw

|f(z)|2dV =
∑
j≥0

|aj |2σ2j+2
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and
1

πn

∫
Γw

|f(z)|2dV ≤ 1

πn

∫
Dt

|f(z)|2dV = |f |2t

This shows that

|f(w)| = |a0| ≤
1

πnσ

(∫
Γw

|f(z)|2dV
)1/2

≤ σ−1|f |s+σ

for any w ∈ Ds and proves the proposition. �

Corollary 5.2. Let F be a closed subspace of the Kolmogorov space Cωn compatible with the
maps of the directed system:

Ft //

��

Fs

��
(Cωn )t // (Cωn )s

for any t > s. There exists a one-bounded projection Cωn −→ F .

Proof. Denote by F̃ the completion of F in Lω,2n and consider the orthogonal projection

π : Lω,2n −→ F̃ .

For any s < t, we define a one-bounded projection from Cωn to F using the commutative diagram:

(Cωn )t //

I

��

Fs

(Lω,2n )t
π // F̃t

I−1

|F̃t

OO

�

Definition of L∞,ωn . Let (L∞,ωn )s be the space of convergent power series in z1, . . . , zn such
that the quantity

|f |s = sup
i
|ai|s|i|, |i| := i1 + i2 + · · ·+ in

is finite. This defines a Kolmogorov space, indexed by ]0, 1], that we denote by L∞,ωn . Recall
that a series is called of order N if, in its Taylor expansion, all terms of degree less than N
vanish. Our aim is to relate approximations by Taylor series with norms in Kolmogorov spaces.

Lemma 5.3. If f ∈ L∞,ωn is of order N then

|f |s ≤ |f |s+σ
(

s

s+ σ

)N
Proof. Put f =

∑
|i|≥N aiz

i, we have

|ai|s|i| = |ai|(s+ σ)|i|
(

s

s+ σ

)|i|
≤ |f |s+σ

(
s

s+ σ

)N
�

This lemma relates the filtration by the maximal ideal with the L∞-norms. We now wish to
have a similar result for Cωn . This will be obtained by studying the identity morphism between
this spaces.

For this, we consider the identity morphism

I : Cωn −→ L∞,ωn .
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This identity morphism factors through the identity morphism

Cωn −→ L2,ω
n .

It is therefore 0-bounded of norm at most equal to 1.

Proposition 5.4. The identity morphism

I−1 : L∞,ωn −→ Cωn

is n-bounded with norm at most equal to 1.

Proof. Take f ∈ (L∞,ωn )t and choose z ∈ Ds with t > s. We have:

|f(z)| ≤
∑
i

|ai|s|i| =
∑
i

|ai|t|i|
(s
t

)|i|
.

Using the estimate
|ai|t|i| ≤ |f |t,

we get that

|f(z)| ≤
(

t

t− s

)n
|f |t ≤

1

(t− s)n
|f |t.

�

As the filtration by the maximal ideal in Cωn coincides with the canonical one (see Section 4),
Lemma 5.3 and Proposition 5.4 show that

Corollary 5.5. For any N > 0 and any f ∈ (Cωn )
(2N )
t and s < t ≤ 1 we have:

|f |s ≤
1

(t− s)n
|f |t

(s
t

)2N

.

6. Arnold spaces

Definition 6.1. An S pre-Arnold space E• is a product of S-Kolmogorov spaces indexed by
N := N ∪ {+∞}:

E• :=
∏
i∈N

Ei.

As for Kolmogorov spaces, we sometimes omit the index S. We endow pre-Arnold spaces of
the product topology.

A map of pre-Arnold spaces u• : E• −→ F• is a morphism if
i) u•(Ei) ⊂ Fi, ∀i ∈ N ;
ii) the map u• induces morphisms of Kolmogorov spaces ui : Ei −→ Fi.

This defines the category of pre-Arnold spaces. In pre-Arnold spaces, τ -morphisms and k-
bounded τ -morphism are defined componentwise. We define the norm of a k-bounded τ -
morphism

u• : E −→ F

as the sequence
|u•|τ := |ui|τ .

So it is not a norm in the usual sense of it, but rather a sequence of norms.
Filtrations defined for Kolmogorov spaces extend naturally to pre-Arnold spaces, for instance:

x• ∈ E(k)
• ⇐⇒ xi ∈ (Ei)

(k), ∀i ∈ N.
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Definition 6.2. An S-Arnold space E• (or simply an Arnold space) is a pre-Arnold space
together with 0-bounded morphisms

rij : Ei −→ Ej , i, j ∈ N ∪ {∞}, i < j

with norm at most one.

So an Arnold space is a special type of directed system of Banach spaces indexed by the
product of N ∪ {∞} with an interval.

Note that E∞ is the limit of the directed system of Kolmogorov spaces (Ei), k ∈ N ∪ {∞}.
The maps rij are called restriction morphisms. For simplicity, they are assumed to be 0-

bounded, this condition can be relaxed by k-bounded for arbitrary k ≥ 0.
The category of Arnold spaces is the full subcategory of pre-Arnold spaces having for objects

Arnold spaces. In particular, a morphism of Arnold spaces does NOT necessarily commute with
restriction mappings.

Here are some conventions to simplify the notations:
i) we use the notation r for the restriction map from Ei to E∞ instead of ri∞;
ii) for x ∈ (Ei)s, we denote its norm simply by |x|s;
iii) given morphisms u : Ei −→ Ei, v : Ei+j −→ Ei+j we write vu for the composed map

v ri+j u.
Note that there is a natural functor from the category of Kolmogorov spaces to that of Arnold

spaces by taking the product with itself

F : KS −→ AS, E 7→ E• := E × E × E × · · ·

where restriction mappings are simply all equal to the identity.

The Arnold space Cωα (a)•. We now fix a real positive decreasing sequence a = (aj) bounded
by 1. We define the closed subsets

C(a)i := {α ∈ Cn : σ(α)j ≥ aj , ∀j ≤ 2i}, i ∈ N ∪ {∞}

so that C(a) is equal to C(a)∞.
Take α ∈ C(a) and let Ds(α) ⊂ Cn be the closed polydisk of radius s centred at α. Put

Ki,s = C((1− s)a)i ∩Ds(α).

The parametrisation is chosen so for any x ∈ Ki,s and any t > s, the polydisk of radius
ai/2

i(t− s) is contained inside Ki,t (we will use this property in the Appendix).
We now define the space Cωα (a)i,s by taking continuous onKi,s and holomorphic in its interior:

Cωα (a)i,s = O(K̊i,s) ∩ C0(Ki,s).

The supremum norm induces a Banach space structure on Cωα (a)i,s.
For each i, the inclusions Ki,s ⊂ Ki,t, t > s, Ki+1,s ⊂ Ki,s induce a doubly directed system

· · · // Cωα (a)i,t //

��

Cωα (a)i+1,t

��

// · · ·

· · · // Cωα (a)i,s // Cωα (a)i+1,s
// · · ·

In this way, we defined the Arnold space Cωα (a)• which generalises the construction given by
Arnold in his proof of the KAM theorem [1]. If α ∈ Cn is the origin and a is the zero sequence
then

Cωα (a)• = Cωn .
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There are, of course, Arnold spaces Cl,ωα (a) obtained by replacing C0-norms | · |0i,s by Cl-norms
| · |li,s:

|f |li,s := max
|j|≤l

1

|j|!
|∂jf |0i,s

where j = (j1, . . . , jn) and |j| = j1 + j2 + · · ·+ jn.

7. The abstract KAM theorem

We say that an increasing real positive sequence p := (pi) is tamed if∑
i≥0

log p′i
2i

< +∞, p′i := max(1, pi).

This condition was introduced by Brjuno in the context of Diophantine approximation for lin-
earising vector fields [3].

Definition 7.1. A k-bounded morphism of Arnold spaces

u• = (ui) : E• −→ F•

is called k-tamed if the sequence |u•|τ = (|ui|τ ) is tamed.

We denote by Mk(E•, F•) the vector space of k-tamed morphisms and for E• = F•, we write
Mk(E•) instead of Mk(E•, E•). It is a vector subspace of k-bounded morphisms, therefore it
admits a natural filtration:

Mk(E•, F•) ⊂Mk(E•, F•)
(1) ⊂Mk(E•, F•)

(2) ⊂ · · ·

Observe that we have an inclusion of vector spaces:

Mk(E•, F•) ⊂ Bk(E•, F•)

for any k ≥ 0.
The above definition can be extended to polynomials and more generally to arbitrary map-

pings:

Definition 7.2. A map of Arnold spaces (non necessarily linear):

f : E• −→ F•

is k-tamed by a tamed sequence (pi) if:

|x|i,t ≤ R(t− s)k =⇒ |f(x)|i,s ≤ Rpi
for any R ≥ 1.

We now define approximated inverses of linear mappings in Arnold spaces. To do this, we
first introduce a new filtration on a Kolmogorov space: the harmonic filtration. It generalises
both the filtration by Fourier harmonics for functions on a torus and the filtration by the degree
for the Taylor expansion of a germ (cf. Corollary 5.5).

This filtration depends on the choice of d ≥ 0. For a given Kolmogorov space E, the terms of
the filtration are defined by

Hd(Ei) = {x ∈ Ei : |x|s ≤
1

(t− s)d
(s
t

)2i

|x|t, ∀s < t}.

We may now proceed to the definition of right quasi-inverses (the definition for left quasi-
inverses is similar but we do not need it):
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Definition 7.3. Let u : E• −→ F• be a morphism of Arnold spaces. A right d-quasi inverse of
a morphism u : E• −→ F• is a morphism v : F• −→ E• such that

y − uv(y) ∈ Hd(Fi), for all y ∈ Fi.

There is a natural notion of bounded splitting in an Arnold space that we shall use in the
formulation of the theorem: if E• is an Arnold space, we say that (F•, G•) define a k-bounded
splitting of E• if

i) E• is the direct sum of F• and G• ;
ii) the subspaces F• and G• are closed ;
iii) the projections on each factor πF , πG are k-bounded with norm at most one.

Theorem 7.4 ([6]). Let E• be an Arnold space, M• a closed subspace of E•, (F•, G•) a bounded
splitting of M•. Consider a vector subspace g• ⊂ M1(E•)

(2) and let H ∈ (E0)t be such that g•
maps H + F• in G•. We consider the linear maps

ρ(α) : g• −→ G•, u 7→ u(H + α)

with α ∈ F• and assume that there is a right quasi-inverse j(α) to ρ(α). Denote by πF , πG m-
bounded projections on F,G for some m ≥ 0. Take R ∈ (M0)t and define inductively β• ∈ E•,
u• ∈ g• by putting

β0 = R, u0 = j(0)(β0);

and {
βi+1 = e−ui(ai + βi)− ai+1;
ui+1 = j(

∑n
i=0 αi) (πG(βi+1))

where {
αi = πF (ui(ai)− βi);
ai+1 = ai + αi.

Assume moreover that

A) βi ∈ Hd(Ei)
B) for some k ≥ 0, j(α) ∈Mk(G•, g•) ;
C) the map j : F• −→Mk(G•, g•), α 7→ j(α) is l-tamed;

then for any R ∈ M0 and any A ∈]1, 2[ , there exists a constant µ > 0 depending only on
H,R, d, k, l,m, and converging sequences α• ∈ F•, β• ∈ M• such that the morphism u• =
j(α•)(β•) satisfies

i) |ui|s < µe−A
i

s for any s < 2−10(d+k+l+m+1)(
∏
i≥0 p

−2−n

i )5t ;
ii) g(H +R) = r(H)(modF∞) where g is the limit of the sequence

(reuieui−1 . . . eu1eu0)i∈N ⊂ L(E0, E∞).

Our main theorem (Theorem 3.3) is a consequence of the abstract KAM theorem to the
following spaces of functions in the 4n variables (t, τ, q, p):

E• := Cωα (a)•⊗̂Cω3n, M• = E
(3)
• , F• := E

(3)
• ∩

(
I2 ⊕ (Cωn ⊗̂Cωα (a)•)

)
The subspace g• consists of sequences of Hamiltonian derivations. Corollary 5.5 implies condition
A). So, to prove the theorem, it remains to construct a quasi-inverse j to the infinitesimal action
ρ.
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8. Construction of the quasi-inverse

Let us denote by R the Arnold space Cωα (a)•⊗̂Cωn with coordinates functions t1, . . . , tn,
τ1, . . . , τn.

We define a complement G• to F• as a sum of three R-modules

G• = A• ⊕B• ⊕ C•
with (we use multi-index notations):

(1) A• =
⊕n

i=1R(piqi − τi) ;
(2) B• =

⊕
I−J 6=0Rp

IqJ ;
(3) C• :=

⊕n
i=1(piqi − τi)B•.

where · denotes the closure.
According to Corollary 5.2, (F•, G•) define a 1-bounded splitting. Let us denote by ? the

Hadamard product for series, that is, the series obtained by taking the products coefficientwise:∑
i≥0

aiz
i

 ?

∑
i≥0

biz
i

 =
∑
n≥0

aibiz
i

Lemma 8.1. The Hadamard products

?h• : R⊗̂L2,ω
n −→ R⊗̂L2,ω

n

with the functions

hk(α, q, p) :=

2k∑
‖i−j‖=1

1

(α, i− j)
qipj , ai ∈ C

define a 0-tamed morphism whose norm is bounded from above by the sequence a−1.

Proof. Write
f =

∑
i≥0

fijq
ipj , fij ∈ R.

We have

f ? hk(q, p) =

2k∑
‖i−j‖=1

fij
(α, i− j)

qipj ,

thus

|f ? hk|k,s ≤
1

σ(α)k

√√√√√ 2k∑
‖i−j‖=1

|fij |2k,s|qipj |s ≤
1

ak
|f |k,s.

This proves the lemma. �

In the decomposition A• ⊕ B• ⊕ C•, the operator ρ•(f) admits the lower triangular decom-
position Id 0 0

0 ?g 0
0 {−, f} ?g


with

g :=
∑
i6=j

(α+ t, (i− j))qipj .
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As the matrix is lower triangular, we can compute the inverse explicitly over formal power
series. We truncate these series and define a right quasi-inverse j•(f) to ρ(f) by putting

jk(f) :=

Id 0 0
0 µk 0
0 µk{−, f}µk µk


where µk = − ? hk. Corollary 5.5 shows that it is indeed a quasi-inverse to ρ(f).

Lemma 8.1 and Proposition 5.1 imply that the Hadamard product with h• is 1-tamed with
norm bounded from above by the sequence a−1. This shows that our quasi-inverse satisfies
condition A) of the abstract KAM theorem.

Let us now check condition B). The map

f 7→ jk(f)

involves first order derivatives of f . Due to Cauchy inequalities, it is therefore 1-tamed. This
shows condition B) of the abstract KAM theorem and concludes the proof of the theorem.

The proof of the abstract KAM theorem is constructive and therefore we have explicit bounds
for the estimate i) in Theorem 7.4 which implies point 2) of the theorem and point 3) is obvious
since the construction of the quasi-inverse preserves real structures when H is real.

Appendix A. Regularity in Cl,ωα (a).

We give an abstract version the regularity of KAM tori discovered by Pöschel [21]. Gevrey
regularity can be treated in a similar way.

The identity morphism
I : Cl,ωα (a) −→ C0,ω

α (a)

is 0-bounded with norm at most one. The Cauchy inequalities give a partial converse:

Lemma A.1. The identity morphism

I−1 : C0,ω
α (a) −→ Cl,ωα (a)

is l-bounded and its norm is bounded by the sequence (2ila−li )

Proof. Take s < t and f ∈ (Cl,ωα (a))i,t . Put Ki,s = C((1− s)a)i ∩Ds(α). For any x ∈ Ki,t, the
ball of radius ai/2i(t− s) is contained inside Ki,s. Thus, the Cauchy inequalities imply that

|I(f)|s ≤
2il

(t− s)lali
|f |t.

This proves the lemma.
�

In particular, any k-bounded u ∈ Bkτ (C0,ω) induces a (k + l)-bounded morphism

v ∈ Bk+l
τ (Cl,ωα (a))

for which there is a commutative diagram

Cl,ωα (a)
v //

I

��

Cl,ωα (a)

I

��
C0,ω
α (a)

u // C0,ω
α (a)
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Corollary A.2. Let a = (ai) be a positive decreasing sequence and l a positive real num-
ber. For any k-bounded τ -morphism u ∈ Bkτ (C0,ω(a)), the norm of the induced morphism
v ∈ Bk+l

τ (Cl,ωα (a)) satisfies the estimate

|vi|τ ≤
2(k+l)(i+1)

ak+l
i

|ui|τ

for any i ≥ 0.

Proof. Take s < t ≤ τ and f ∈ (Cl,ωα (a))i,t . We cut the interval t− s into two equal pieces and
write v• = I−1u•I. The previous lemma shows that:

|I−1uiI(f)|s ≤
2l(i+1)

(t− s)lali
|uiI(f)|s+σ

with σ = (t− s)/2. As u• is k-bounded, we have that

|uiI(f)|s+σ ≤
2k(i+1)

(t− s)kaki
|ui|t |I(f)|t

As I is 0-bounded with norm 1, we have

|I(f)|t ≤ |f |t.
This proves the corollary. �

We may now consider the following particular case :

Corollary A.3. Let a = (ai) be a decreasing positive sequence and u a k-bounded τ morphism
of C0,ω

α (a), for some τ > 0. Assume that (|ui|τ ) decreases faster than any power of (2−iai) :

|ui|τ = o(2−ijaji ),∀j > 0.

For any l > 0, the norm of the morphism

v• : Cl,ωα (a) −→ Cl,ωα (a)

induced by u• has the same property:

|vi|τ = o(2−ijaji ), ∀j > 0.

This shows that the C0,ω
α (a)-bounded morphism u• of the abstract KAM theorem induces a

C∞,ωα (a)-bounded morphism v• whose norm decrease exponentially fast. By [6, Theorem 4.1],
the sequence (evi . . . ev0) converges to a limit with C∞ dependence on the t parameters.
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