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SINGULARITIES OF COMPLEX VECTOR FIELDS HAVING MANY

CLOSED ORBITS

B. SCÁRDUA

Abstract. A well-known result of Mattei and Moussu ([18]) states that a germ of a holomor-

phic vector field at the origin 0 ∈ C2 admits a holomorphic first integral if, and only if, the

orbits are closed off the origin and only finitely many of these accumulate (only) at the origin.
In this paper we investigate possible versions of such a result in terms of the measure of the set

of closed orbits. We prove that if the set of closed leaves is a positive, i.e., a non-zero measure

subset and the set of leaves accumulating only at the origin is a zero measure subset, then
either there is a holomorphic first integral or the germ is formally linearizable as a suitable

non-resonant singularity. The result is sharp as we show through some examples.

1. Introduction

The problem of deciding whether a vector field or, more generally, an ordinary differential
equation can be integrated by studying its number of non-transcendent solutions goes back to H.
Poincaré, Dulac ([12]) and other authors. More recently the classical theorem of G. Darboux ([16]
pages 80 and 135) states that a polynomial vector field in the complex plane admits a rational
first integral if, and only if, it admits infinitely many algebraic solutions. The class of analytic
equations seems to be the one where the above problem makes more sense. Moreover, with
the arrival of the theory of foliations the use of geometrical/topological methods has given an
important contribution to the comprehension of the problem as well as some important results.
The local framework is not less important than the global (algebraic) case. In this sense we
have the remarkable theorem of Mattei-Moussu (Theorem B [18]) that states that a germ of a
holomorphic vector field at the origin of C2 admits a holomorphic first integral if, and only if,
it has only finitely many leaves accumulating at the singularity and all other leaves are closed.
Recall that by a holomorphic first integral for a germ of a vector field, we shall mean a germ of
a holomorphic function, which is not locally constant, but which is locally constant along the
orbits of the vector field.

Following the convention in [10], in this paper we say that a subset Ω ⊂ Cn has positive
measure if it is not a zero measure subset of Cn, in the usual Lebesgue measure sense.

In [1] the authors prove the existence of a holomorphic first integral, under the hypothesis of
existence of a uniform bound for the volume of the orbits of the vector field, and some additional
condition that restricts the so called “dicritical case”.

A holomorphic vector field X defined in a neighborhood U ⊂ C2 of the origin 0 ∈ C2, with
an isolated singularity at the origin, defines a unique germ of holomorphic foliation F(X) with a
singularity at the origin in a natural way: the non-singular orbits of X are the (representatives
of) the leaves of F(X). Conversely, any germ F of holomorphic foliation with a singularity at the
origin is defined in a small enough open neighborhood of the origin by a holomorphic vector field,
i.e., F = F(X) for some vector field X as above. This is a consequence of Hartogs’ extension
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theorem ([14]). Thus we shall refer to leaf as well as to orbit in our considerations. Given such
a pair (X,U), we denote by Ω(X,U) ⊂ U the union of orbits of the restriction X

∣∣
U

which are

closed in U . Also we denote by Sep(X,U) ⊂ U the union of orbits of X
∣∣
U

that accumulate only

at the singularity. By Remmert-Stein’s classical theorem, each leaf in Sep(X,U) is contained in
an analytic invariant curve, called a separatrix of F . Recall that a germ of an isolated singularity
at 0 ∈ C2 is called dicritical if it exhibits infinitely many separatrices.

It is not difficult, by using the reduction of singularities (see Section 5) to conclude that a
germ is dicritical if, and only if, for any arbitrarily small neighborhood of the origin, its set of
separatrices in U has non-empty interior and therefore, positive measure (cf. Lemma 5.1).

Mattei-Moussu’s above mentioned theorem then states that the germ of a vector field X
admits a holomorphic first integral if, and only if, for some small enough neighborhood U of the
origin we have: (i) Sep(X,U) is a finite union of analytic curves and (ii) Ω(X,U) = U \Sep(X,U).
This implies that (a) Sep(X,U) is a zero measure subset and (b) Ω(X,U) has positive measure.
We shall say that a germ of a holomorphic foliation F at 0 ∈ C2 is the germ of a (PCO)
singularity if for some neighborhood U of the origin, F is given by a vector field X such that
Ω(X,U) has positive measure.

At this point one may ask whether conditions (a) and (b) above are enough to assure the
existence of a holomorphic first integral. In other words:

“Does a non-dicritical (PCO) germ of a holomorphic foliation admit a holomorphic first inte-
gral?”

As we shall see, the answer to the above question is not always positive, for there may be
regions of non-closed orbits, having positive measure. This is because of the very particular
local dynamics of certain germs of complex diffeomorphisms, exhibiting some non-resonance
properties. Let us start with this class of maps. A germ of a complex diffeomorphism at the

origin 0 ∈ C is given by a convergent power series f(z) = az +
∞∑
j=2

ajz
j , where a = f ′(0) 6= 0.

Given a small enough neighborhood 0 ∈ U ⊂ C we can choose a representative f : U → f(U) for
the germ. The set of closed orbits of f in U is the set Ω(f, U) ⊂ U of points x ∈ U such that
Of (x)∩U is closed. Here, by Of (x) we denote the pseudo-orbit of x under the action of f . The
map f is non-resonant if a = e2πiλ where λ ∈ R \Q. Such a map is not necessarily analytically
linearizable (cf. [3],[22]). Following the classical terminology, a non-linearizable non-resonant
map will be called a Cremer map. Details of such dynamics will be given later (see Section 2).
As for now we observe that a Cremer map germ is always formally linearizable ([2, 3]). Such
a map will be called (PCO) (from positive-closed-orbits) if for arbitrarily small neighborhoods
of the origin, the set of closed orbits in such a neighborhood has positive measure. Thanks to
the notion of holonomy of a separatrix, there is a strict connection between these Cremer maps
and a suitable class of singularities of holomorphic vector fields. This is detailed in Section 2
(cf. Remark 3.7). As for now, an isolated singularity of a holomorphic vector field in dimension
two will be called a Cremer type singularity if it is a non-resonant singularity, i.e., of the form
F : xdy−λydx+ h.o.t. = 0, λ ∈ R \Q, which is also not analytically linearizable. (This already
implies λ ∈ R− since for λ ∈ R+ \Q, by Poincaré linearization theorem, the singularity is always
analytically linearizable). For such a non-resonant singularity it is well known that we have
exactly two transverse separatrices. Actually, we can change coordinates in order to write it
as F : x(1 + a(x, y))dy − λydx = 0, where a(x, y) is holomorphic and vanishes at (0, 0). The
holonomy map h of the separatrix (y = 0) is well defined up to conjugacy in Diff(C, 0). Thanks
to the relation between the analytic classification of the singularity and that of the holonomy
map of a separatrix ([19, 18]) we conclude that a non-resonant singularity is of Cremer type
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if, and only if, the corresponding holonomy map h is a Cremer map germ. A Cremer type
singularity is then called a (PCO) Cremer type singularity if the mentioned holonomy map is
also a (PCO) Cremer map. In terms of the foliation itself, this is is equivalent to saying that
the singularity is non-resonant and not analytically linearizable, but with a positive measure
set of closed orbits/leaves on each arbitrarily small neighborhood of the singularity. Thus a
(PCO) Cremer type singularity is just a Cremer type singularity which is the germ of a (PCO)
singularity in the sense defined above.

There are other examples of singularities with positive measure sets of closed orbits as we
pause to describe. A germ of a foliation F is a holomorphic pull-back of a Cremer type singularity,
if there is a germ of a Cremer type singularity G : Ω = xdy − λydx+ h.o.t. = 0 and a germ of a
holomorphic map Φ: (C2, 0)→ (C2, 0) such that F = Φ∗(G), i.e., F is defined by the germ of a
holomorphic one-form Φ∗(Ω). In particular, if the Cremer type singularity is a (PCO) singularity
then the same holds for F . (A closed leaf will be analytic and the same holds for its pre-image
under the map Φ).

Since Cremer type singularities are always formally linearizable, there are formal functions

f̂j ∈ O2 in two complex variables and complex numbers λj , j = 1, 2; such that Ω ∧ ω̂ = 0

where ω̂ =
2∑
j=1

λjdf̂j/f̂j . Briefly, the foliation is defined by a formal closed one-form with simple

poles. Thus, (PCO) singularities can be seen as a particular case of a bigger class as follows.
A germ of a holomorphic foliation F is formally equivalent to a Darboux foliation (or also to a
logarithmic foliation) if it can be defined by a formal closed meromorphic one-form with simple

poles F : ω̂ =
r∑
j=1

λjdf̂j/f̂j for some λj ∈ C \ {0} and formal functions f̂j .

As an extension of the above mentioned result, the following theorem is proved in this paper.

Theorem 1.1. Let X be a holomorphic vector field defined in an open neighborhood of the origin
with a non-dicritical singularity at 0 ∈ C2. Then the following conditions are equivalent:

(1) For any sufficiently small neighborhood U of the origin the union of closed orbits Ω(X,U)
is a positive measure subset.

(2) The corresponding germ of a holomorphic foliation F(X) admits a holomorphic first
integral or it is formally equivalent to a Darboux type singularity having some (PCO)
Cremer type singularity in its reduction of singularities.

Remark 1.2. We refer to Section 5 for the description of the reduction of singularities mentioned
above. The proof of Theorem 1.1 actually shows that the existence of holomorphic first integral is
equivalent to (1) plus the fact that the reduction of singularities of F(X) exhibits no non-resonant
singularity, i.e., no singularity of the form xdy − λydx+ h.o.t. = 0 with λ ∈ R \Q.

The existence of (PCO) Cremer type singularities in shown in Section 2. From Theorem 1.1
and from the considerations in Section 2 and Remark 3.7, we can state, still for foliation germs
at the origin 0 ∈ C2:

Corollary 1.3. A foliation germ F = F(X) exhibits a holomorphic first integral if and only if
for any sufficiently small neighborhood U of the origin:

(1) Ω(X,U) has positive measure.
(2) Sep(X,U) has zero measure.
(3) There is no recurrent orbit or no orbit properly accumulating at Sep(X,U).

The author is very much indebted to the referee, for his/her constructive comments, careful
reading and valuable suggestions that have greatly improved this article.
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2. Cremer maps: according to Pérez-Marco

Expand a germ of a complex diffeomorphism f at the origin 0 ∈ C as

f(z) = e2πiλz + ak+1z
k+1 + ... .

The multiplier f ′(0) = e2πiλ does not depend on the coordinate system. We shall say that the
germ f ∈ Diff(C, 0) is non-resonant if λ ∈ C \ Q. If λ /∈ R then |f ′(0)| 6= 1 and the germ
is hyperbolic. In particular, it is either an attractor or a repeller. In the hyperbolic case the
diffeomorphism is analytically linearizable, i.e., conjugated to its linear part by a germ of a map
([12]). If |f ′(0)| = 1, then we have f ′(0) = e2πiλ for some λ ∈ R. If f ′(0) is a root of unity
(i.e., if λ ∈ Q) then the dynamics of f is well-known from a theorem due to C. Camacho ([4], or
also [3] page 38 and for dynamics of holomorphic maps in dimension one). In particular, close
to the origin, none of the orbits off the origin is periodic. If f ′(0) is not a root of unity then we
have λ ∈ R \Q. In this case we shall say that the diffeomorphism is non-resonant. Cremer gave
the first proof of the existence of non-linearizable non-resonant map germs in 1927 [11]. Then
his results were followed by those of Siegel, Brujno, Yoccoz and other authors. Most of these
results are associated to diophantine conditions on the multiplier of the map. Such conditions are
stated in terms of the convergence or divergence of certain series. A very nice description of the
dynamics of such maps is given by Pérez-Marco in [24, 25]. Recall that if f is a diffeomorphism
map germ, given a representative f : U → f(U) defined in an open connected subset 0 ∈ U ⊂ C
then the stable set of f in U is defined by the intersection

K(U, f) =

∞⋂
j=0

f−j(U).

According to Pérez-Marco ([23], [22]) if f is a Cremer map, and given a representative defined
in an open connected subset 0 ∈ U ⊂ C, then:

(i) The stable set K(U, f) is compact, contains a connected totally invariant compact K0,
full (i.e., U \K(U, f) is connected), it is not reduced to {0}, and it is not locally connected
at any point distinct from the origin.

(ii) Any point of K(U, f) \ {0} is recurrent (that is, a limit point of its orbit).
(iii) There is an orbit in K(U, f) which accumulates at the origin, but no non-trivial orbit

converges to the origin.

Recall that a (PCO) Cremer map germ is a Cremer map germ, such that its representatives
exhibit positive measure sets of closed orbits, in arbitrarily small neighborhoods of the origin.

Proposition 2.1 (Existence of (PCO) Cremer maps and (PCO) Cremer type -singularities).
There exist (PCO) Cremer map germs as well as (PCO) Cremer type singularities.

Proof. We first show the existence of (PCO) Cremer map germs. According to Pérez-Marco
(cf. his talk about the “Siegel problem” at the “Bourbaki seminar” [22], pages 281, 282), by
“reversing” the geometric proof of Siegel-Brujno’s linearization theorem (see [22] pages Chapter
4), using the notion of renormalization, it is possible to construct Cremer maps exhibiting a
sequence of periodic points converging to the origin. Actually, as already pointed by Peréz-
Marco, the construction is very flexible and allows us to fix with liberty the dynamics of return
around these periodic orbits, but not around the origin (see the first paragraph of page 282 of
[22]). To be more precise, let F : (C, 0) → (C, 0) be such a Cremer map, exhibiting a sequence
of periodic points {pi}i∈N, converging to 0 ∈ C. Denoting by ni the period of pi, it is clear that
the sequence {ni} ⊂ N goes to infinity. From the renormalization techniques detailed in Chapter
4 in [22] (or also in [31]) we know that the renormalized dynamics fni about pi can arbitrarily
be fixed on a sufficiently small neighborhood of pi. In particular, they can be chosen to locally
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coincide with the identity. Thus the resulting local diffeomorphism is also a Cremer map (see the
first paragraph in [22] page 287) and possesses a set of periodic points having positive measure.

Now we show the existence of (PCO) Cremer type singularities. First we notice that, in case
we have a (PCO) Cremer map f : (C, 0) → (C, 0), then, by a result due to Pérez-Marco and
Yoccoz [26] the map germ f is conjugate to the local holonomy of a separatrix associated to
a germ of a holomorphic foliation F(f) possessing a Siegel-type singular point at the origin.
Then, by construction, the germ of a foliation F(f) is non-dicritical, non-resonant and possesses
a set of closed leaves having positive measure. (These leaves are in natural correspondence with
periodic points of f). It is however clear that the foliation in question only admits constant
holomorphic first integrals. (Indeed, not all leaves are closed off the origin or else, using [18], it
has a non-linearizable holonomy for one separatrix). This shows the existence of (PCO) Cremer
type singularities.

�

3. Groups with positive measure set of closed orbits

Let Diff(C, 0) denote the group of germs of holomorphic diffeomorphisms at the origin 0 ∈ C.
The following is a well-known result:

Lemma 3.1. Let G ⊂ Diff(C, 0) be a finite group of germs of complex diffeomorphisms. Then
G is analytically conjugate to a cyclic group generated by a rational rotation, i.e., up to a holo-
morphic change of coordinates we have G = {z 7→ e2kπi/νz, k = 0, 1, ..., ν − 1} for some ν ∈ N.

Proof. The proof is well-known, the linearization is given by the map Φ: (C, 0)→ (C, 0) defined
by Φ(z) = 1

|G|
∑
g∈G

g(z)/g′(0), where g runs through the (finite) list of elements of G and |G|

denotes the order of G. �

Definition 3.2 (resonant group). A germ of a complex diffeomorphism g ∈ Diff(C, 0) is called
resonant if its multiplier is a root of unity, i.e., g′(0) = e2πik/` for some k, ` ∈ N. A group
G ⊂ Diff(C, 0) of germs of holomorphic diffeomorphisms will be called resonant if each map
g ∈ G is a resonant germ. This is equivalent to the fact that G has a set of generators consisting
only of resonant maps.

The next result is, for the case of resonant groups, a generalization of a result in [18] and of
a result found in [29].

We shall say that a subgroup G ⊂ Diff(C, 0) has the (PCO) property if any sufficiently small
neighborhood U of the origin 0 ∈ C, the set Ω(G,U) of points having closed pseudo-orbit has
positive measure in U .

Lemma 3.3. If G ⊂ Diff(C, 0) has the (PCO) property then G ∩ {Id + h.o.t.} = {Id}. In
particular G is abelian.

Proof. Indeed, pick a non-trivial element g ∈ G of the form g(z) = z + ak+1z
k+1 + h.o.t.,

ak+1 6= 0. According to [4] the pseudo-orbits of this element are neither closed nor finite. Thus
necessarily G ∩ {Id + h.o.t.} = {Id}. Given two element f, g ∈ G the commutator belongs to
G ∩ {Id + h.o.t.} so f and g commute. Hence G is abelian. �

Lemma 3.4. Let G ⊂ Diff(C, 0) be a finitely generated resonant subgroup with the (PCO)
property. Then G is finite cyclic and analytically conjugate to a group of rational rotations.

Proof. By Lemma 3.3 above the group is abelian and all of its elements tangent to the identity
are trivial. Since by hypothesis any element has a periodic linear part we conclude that:
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Claim 3.5. Any element g ∈ G has finite order.

Since G is abelian and finitely generated, the claim implies that G itself is finite. According
to Lemma 3.1, G must be a group of rational rotations up to analytic conjugation. �

As a consequence of the above considerations we obtain:

Lemma 3.6. Let G ⊂ Diff(C, 0) be a finitely generated subgroup with the (PCO) property.
Then either G is a cyclic finite (resonant) group or it is an abelian formally linearizable group,
containing some (PCO) Cremer diffeomorphism.

Proof. By Lemma 3.4 we can assume that G contains some non-resonant map. Since hyperbolic
and linearizable maps with non-periodic linear part exhibit no closed orbit off the origin, we can
then assume that G contains some Cremer map say f0 ∈ G. By Lemma 3.3 G is indeed abelian
with no element tangent to the identity and all resonant elements are periodic. Since f0 ∈ G is
formally linearizable and non-resonant, any map in G is also formally linearizable in the same
formal coordinate that linearizes f0. Thus G is formally linearizable. �

Remark 3.7 (Closed orbits versus periodic orbits for Cremer maps). Notice that, fixed a neigh-
borhood 0 ∈ U ⊂ C, where we have defined a representative f : U → f(U) ⊂ C, of a Cremer
map, the stable set K(f, U) is the set of points in U which have all iterates f j(p), j ∈ N, defined
and contained in U . The fact that a point p ∈ U has all its iterates in U and has a closed orbit,
implies (since K(f, U) is compact), that the orbit of p is periodic. Such points do not exist in
U , because all the points in K(f, U) \ {0} are recurrent (cf. Section 2). Nevertheless, there can
be points with closed orbits, which are not periodic in U . These points have only finitely many
of their iterates defined and contained in U . Actually, this situation has already been addressed
by Mattei-Moussu in their original article ([18]), in the proof of their Theorem 2.1 page 478.
Indeed, they consider a fixed disc D where the map is defined, and write (under the hypothesis
that all orbits of the considered map are finite, but not necessarily contained in the fixed disc),
the disc as D = P ∪ F ∪ I. In their terminology we have: P is the set of points periodic points
in D, F is the set of points with periodic orbits, but not fully contained in D, and I is the set
of points with infinitely many iterates in D. So they prove D = P ∪ F ∪ I and conclude that if
the map is not periodic (finite order map) then I is non-countable and contains the origin in its
adherence, which is enough for their purposes. In his revisiting paper ([21]) Moussu proves an
analogue of the same theorem (see the Proposition at page 477) but using Pérez-Marco’s work.
(Namely, the key point is the fact that a Cremer map exhibits a stable set, having the origin as
an accumulation point, which does not reduce to the origin, and where the orbits are not finite.)

4. Holonomy and virtual holonomy groups

Let now F be a holomorphic foliation with singularities on a complex surface M . Denote by
Sing(F) the singular set of F . It is known that Sing(F) can be assumed to be a discrete set
of points in M . Given a leaf L0 of F we choose any base point p ∈ L0 ⊂ M \ Sing(F) and a
transverse disc Σp bM to F centered at p. The holonomy group of the leaf L0 with respect to the
disc Σp and to the base point p is the image of the representation Hol : π1(L0,p)→ Diff(Σp,p)
obtained by lifting closed paths in L0 with base point p, to paths in the leaves of F , starting at
points z ∈ Σp, by means of a transverse fibration to F containing the disc Σp ([6]). Given a point
z ∈ Σp we denote the leaf through z by Lz. Given a closed path γ ∈ π1(L0, p) we denote by γ̃z its
lift to the leaf Lz and starting from the point z. Then the image of the corresponding holonomy
map is h[γ](z) = γ̃z(1), i.e., the final point of the lifted path γ̃z. This defines a diffeomorphism
germ map h[γ] : (Σp, p)→ (Σp, p) and also a group homomorphism Hol : π1(L0,p)→ Diff(Σp,p).
The image Hol(F ,L0,Σp,p) ⊂ Diff(Σp,p) of such homomorphism is called the holonomy group
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of the leaf L0 with respect to Σp and p. By considering any parametrization z : (Σp, p)→ (D, 0)
we may identify (in a non-canonical way) the holonomy group with a subgroup of Diff(C, 0).
It is clear from the construction that the maps in the holonomy group preserve the traces of
the leaves of the foliation in the given transverse section. Nevertheless, this property can be
shared by a larger group that may therefore contain more information about the foliation in a
neighborhood of the leaf. The virtual holonomy group of the leaf with respect to the transverse
section Σp and base point p is defined as ([7] Definition 2, page 432 or also in [9])

Holvirt(F ,Σp,p) = {f ∈ Diff(Σp,p)
∣∣L̃z = L̃f(z).∀z ∈ (Σp,p)}

The virtual holonomy group contains the holonomy group and consists of the map germs that
preserve the traces of the leaves of the foliation in the given transverse section.

5. Reduction of singularities in dimension two ([30])

Given a foliation F of dimension one on a complex surface M with singular set SingF ,
the reduction theorem of Seidenberg ([30]) asserts the existence of a proper holomorphic map

π : M̃ →M which is a finite composition of blow-ups at the singular points of F in M such that

the pull-back foliation F̃ := π∗F of F by π satisfies:

(a) SingF̃ ⊂ π−1(SingF), and

(b) any singularity p̃ ∈ SingF̃ belongs to one of the following categories (called irreducible
singularities):

(i) xdy − λydx + h.o.t. = 0 and λ is not a positive rational number, i.e. λ /∈ Q+ (simple or
non-degenerate singularity),

(ii) yk+1dx − [x(1 + λyk) + p(x, y)]dy = 0, where k ≥ 1 and p(x, y) is holomorphic of order
≥ k at the origin. This case is called a saddle-node. The separatrix {y = 0} is called the strong
manifold or strong separatrix of the saddle-node. Its local holonomy map is strongly linked to
the analytical classification of the saddle-node (cf. [20]).

We call the lifted foliation F̃ the desingularization or reduction of singularities of F .

The exceptional divisor D = π−1(SingF) ⊂ M̃ of the resolution π can be written as

D =

m⋃
j=1

Dj ,

where each Dj is diffeomorphic to an embedded projective line CP1 introduced as a divisor of the
successive blow-ups ([13]). The Dj are called components of the divisor D. From the final picture
of the reduction of singularities we conclude that a singularity q ∈ SingF is nondicritical if, and

only if, π−1(q) is invariant by F̃ . Such a germ is called a generalized curve if no saddle-nodes
appear in the reduction of singularities. Any two componentsDi andDj , i 6= j, of the exceptional
divisor intersect (transversely) at at most one point, which is called a corner. There are no triple
intersection points. An irreducible singularity xdy−λydx+ h.o.t. = 0 is in the Poincaré domain
if λ /∈ R− and it is in the Siegel domain otherwise. For singularities in the Poincaré domain,
the non-resonance condition (λ /∈ Q) actually implies hyperbolicity (λ ∈ C \R) and by Poincaré
linearization theorem the singularity is analytically linearizable (cf.[12],[5]). For singularities in
the Siegel domain, the non-resonance condition (λ /∈ Q−) implies formal linearization for the
singularity (cf.[5]). Nevertheless, such a non-resonant singularity is analytically linearizable if
and only if it is topologically linearizable, i.e., conjugated to its linear part by a homeomorphism
between neighborhoods of the origin ([5], [2]).

Fix now a germ of holomorphic foliation with a singularity at the origin 0 ∈ C2. Choose a
representative FU for the germ F , defined in an open neighborhood U of the origin. A leaf of
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FU accumulating only at p is closed off p, thus by Remmert-Stein extension theorem ([15]) it is
contained in an irreducible analytic curve through p. Such a curve is called a local separatrix
of F through p. A singularity is dicritical if and only if it exhibits infinitely many separatrices.
Actually, we have:

Lemma 5.1. A germ of a holomorphic foliation singularity F(X) at 0 ∈ C2 is non-dicritical
if, and only if, for some neighborhood U 3 0, the set of separatrices Sep(X,U) is a zero measure
set.

Proof. Indeed, notice that a neighborhood of some point on some projective line in a finite
sequence of blow-ups starting at the origin corresponds to what we call sector with vertex at the
origin. Thus, from the above mentioned Theorem of reduction of singularities ([30]), a dicritical
singularity always exhibits a “sector” of separatrices with vertex at the singular point. Such a
“sector” has non-empty interior and therefore positive measure. �

By Newton-Puiseaux parametrization theorem, every separatrix is biholomorphic to a disc.
Further, the separatrix minus the singularity is biholomorphic to a punctured disc. In particular,
given a separatrix Sp through a singularity p ∈ Sing(F), we may choose a loop γ ∈ Sp \ {p}
generating the (local) fundamental group π1(Sp \ {p}). The corresponding holonomy map hγ is
defined in terms of a germ of complex diffeomorphism at the origin of a local disc Σ transverse to
F and centered at a non-singular point q ∈ Sp \ {p}. This map is well-defined up to conjugation
by germs of holomorphic diffeomorphisms, and is generically referred to as local holonomy of the
separatrix Sp with respect to the singularity p.

Definition 5.2 (fully resonant). A germ of a generalized curve F at the origin 0 ∈ C2 will be
called fully resonant if every singularity arising in the final step of the reduction of singularities
is a resonant singularity, i.e., a singularity of the form xdy − λydx+ h.o.t. = 0 with λ ∈ Q−.

The following remark is important in the approach we use:

Remark 5.3. By definition, if F is a germ of a foliation at a fully resonant singularity then every
local holonomy arising in the reduction of singularities of F is resonant. Therefore, since the
components of the exceptional divisor are projective lines (and so homeomorphic to the 2-sphere
S2), we conclude that every component of the exceptional divisor has a resonant holonomy group.
Nevertheless, a priori, it is not clear that the same holds for the virtual holonomy groups. Indeed,
such groups may in principle be much larger than the holonomy groups and generated by some
non-resonant maps as well. The notion of invariance group is introduced in [18] page 521, which
is used to “glue” in a compatible way, different local first integrals in the exceptional divisor.
As it follows from [18], the finiteness of these groups implies the existence of a holomorphic
first integral. Nevertheless, again, it is then necessary to prove that these invariance groups are
resonant. This is done in the proof of Theorem 1.1 (cf. Claim 6.2).

Lemma 5.4. Let F be a holomorphic foliation defined in a neighborhood U of the origin 0 ∈ C2,
with an isolated singularity at the origin. A closed leaf of F in U is analytic. A leaf that
accumulates only at the singular point is contained in an invariant analytic curve. Let p ∈ U \{0}
and Σp a small disc transverse to the foliation and centered at p. Then any closed leaf of F
intersecting Σp induces a closed orbit for the holonomy group Hol(F ,Lp,Σp,p) of the leaf Lp
and the same holds for the virtual holonomy group Holvirt(F ,Lp,Σp,p).

Proof. Indeed, by Remmert-Stein extension theorem ([15]), a leaf which is closed in U is analytic.
Also by Remmert-Stein extension theorem, a leaf L such that L \ L = {0} has analytic closure,
because dimL = 1 > 0 = dim(L \ L). The last part follows from the fact that the intersection
of two transverse analytic sets of dimension one in C2 is a discrete set of points. �
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Lemma 5.5. Let F be a germ of a holomorphic foliation in a neighborhood of the origin 0 ∈ C2.
Assume that, for some representative FU of F defined in a neighborhood U of the origin, the
set Ω(F , U) of closed leaves of FU in U has positive measure and the set of leaves accumulating
only at the origin has zero measure. Then F is a generalized curve. Moreover it is either fully
resonant or it exhibits some (PCO) Cremer type singularity in its reduction of singularities.

Proof. By hypothesis the set Ω(F , U) of closed leaves of FU in U has positive measure and the
set of leaves accumulating only at the origin has zero measure. This last hypothesis already
implies that the foliation is non-dicritical (cf. Lemma 5.1). In order to prove that the singularity
is a fully resonant generalized curve, we proceed by induction on the number r ∈ {0, 1, 2, ...} of
blow-ups in the reduction of singularities for the germ F .
Case 1. r = 0. In this case the singularity is already irreducible and we have two possibilities:
(i) The singularity is non-degenerate of the form xdy − λydx+ h.o.t. = 0 for some λ ∈ C \Q+.
By hypothesis, there is a neighborhood U of the origin where the set of closed leaves has positive
measure and the set of leaves accumulating at the origin has zero measure.
• If the singularity is in the Poincaré domain, i.e., λ ∈ C \ R−, then it is not a resonance:
indeed, if λ ∈ N or 1/λ ∈ N then λ ∈ Q+, which does not correspond to the final picture of
the reduction of singularities. Therefore, by Poincaré linearization theorem, the singularity is
analytically linearizable. We may therefore choose local coordinates (x, y) ∈ (C2, 0) such that
the germ can be written as xdy − λydx = 0. The holonomy of the coordinate axis (y = 0) with
respect to a small disc Σ : {x = a} is given by h(y) = e2πiλy. Suppose that λ /∈ R. In this case
the map h is hyperbolic and satisfies limn→∞ hn(y)→ 0 or limn→∞ h−n(y)→ 0. Thus all leaves
(not contained at the separatrices) accumulate at the separatrices. Therefore these leaves are not
closed. This case is excluded by our hypotheses. Assume now that λ ∈ R. Then λ ∈ R+ \ Q+.
In this case the holonomy map h(y) = e2πiλy is an irrational rotation and therefore none of its
orbits off the origin is closed. Again this case is excluded.
• If the singularity is in the Siegel domain, i.e., λ ∈ R−, then we can put it in the form
x(1 + yA(x, y))dy − λy(1 + xB(x, y))dx = 0 for some holomorphic functions A(x, y), B(x, y)
defined in a neighborhood U of the origin. In this case the holonomy of one of the coordinate
axes is a map whose analytic classification is strictly related to the analytic classification of the
foliation ([18]). Let us fix a transverse disc Σ = {x = a} for some a ∈ C close to zero, but
different from zero. The holonomy map of the separatrix {y = 0} can be defined for |y| < ε for
some ε > 0, and gives as a map h : (Σ, 0)→ (Σ, 0). Because of the hypothesis, the holonomy map
has closed orbits on a positive measure set of points of the disc Σ. This map has a multiplier
of the h′(0) = e2πiλ. Suppose that λ /∈ Q. In this case, the holonomy of a separatrix is a
non-resonant map germ. According to Lemma 3.6 this is a (PCO) Cremer type singularity.
(ii) The singularity is a saddle-node. In this case according to [20] there are at most two leaves
which are closed off the singularity and the other leaves are not closed, they do accumulate at
the strong separatrix. Thus this case is excluded.
Case 2. Assume that the result is proved for foliation germs that admit a reduction of sin-
gularities with a number of blow-ups less than or equal to r. Suppose that the fixed germ F
admits a reduction of singularities consisting of r+ 1 blow-ups. Then we perform a first blow-up

π(1) : Ũ (1) → U at the origin and obtain a lifted foliation F̃ (1) = (π(1))
∗(F) with an exceptional

divisor E(1) = π−1
(1)(0) consisting of a single embedded projective line. It is enough to prove that

every singularity of F̃ (1) in E(1) is a generalized curve which is fully-resonant or has Cremer

(PCO) singularities in its reduction of singularities. Given a singularity p̃ ∈ Sing(F̃ (1)) ⊂ E(1)

of F̃ (1), this singularity admits a reduction of singularities consisting of less than r+ 1 blow-ups.
Thus, by the induction hypothesis, in order to conclude that p̃ is a fully-resonant singularity it is
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enough to prove that the germ of F̃ (1) at p̃ has a zero measure set of separatrices and a positive
measure set of closed leaves.

Given a leaf L of F in U we denote by L̃(1) the lifting L̃(1) = π−1
(1)(L) of L to Ũ (1). By

hypothesis, the set of leaves of F accumulating at the origin has zero measure. This implies that

the exceptional divisor is not generically transverse to F̃ (1). Therefore, the exceptional divisor

is invariant by F̃ (1). Given a singularity p̃ ∈ Sing(F̃ (1)) ⊂ E(1) of F̃ (1), we can conclude that

for any small enough neighborhood W̃p̃ of p̃ in Ũ (1), a leaf L̃0 of the restriction F̃ (1)
∣∣
W̃p̃

that

accumulates only at the singularity p̃, necessarily projects into a piece of leaf π(L̃0)(1) which is
contained in a leaf L of F that accumulates only at the origin. Therefore, by the hypothesis on

F in U , the set of leaves of F̃ (1)
∣∣
W̃p̃

that accumulate only at the singularity p̃ has zero measure

in W̃ . Now, if a leaf L of F in U is closed, then its lift L̃(1) is closed in Ũ (1). Such a leaf cannot
contain a separatrix of a singularity p̃. Moreover, because of the invariance of E(1), if the leaf

L̃(1) intersects W̃p̃ then this intersection L̃(1) ∩ W̃p̃ corresponds to a finite number of closed

leaves of F̃ (1)
∣∣
W̃p̃

in W̃p̃. On the other hand, given any leaf L̃0 of F̃ (1)
∣∣
W̃p̃

, this leaf projects

into a piece of leaf L of F in U and if the leaf L̃0(1) is not closed in U then, because of the

invariance of E(1), the leaf L̃0(1) is not closed either. Therefore, we conclude that the set of

leaves of F̃ (1)
∣∣
W̃p̃

which are closed in W̃p̃ has positive measure.

Thus, by the induction hypothesis, the germ of F̃ (1) at each singular point in E(1) is either
a fully-resonant generalized curve or it is a generalized curve exhibiting some (PCO) Cremer
type singularity in its reduction of singularities. By the induction hypothesis the germ F is a
generalized curve, either fully-resonant or exhibits some (PCO) Cremer type singularity in its
reduction of singularities. This proves the lemma. �

6. Proof of Theorem 1.1

Let us now prove our main result Theorem 1.1.

Proof of Theorem 1.1. Let us first prove that (1) implies (2). By hypothesis, there is a neigh-
borhood U of the origin where the set of closed leaves has positive measure and the set of leaves
accumulating only at the origin has zero measure. By Lemma 5.1 the singularity is non-dicritical.
Moreover, by Lemma 5.5, either the foliation is a fully-resonant generalized curve or it admits a
(PCO) Cremer type singularity in its reduction of singularities. Again we proceed by induction
on the number r ∈ {0, 1, 2, ...} of blow-ups in the reduction of singularities for the germ F .
Case 1 (r = 0). In this case the singularity is already irreducible and from the above, it is not a
saddle-node. Thus the singularity is non-degenerate of the form xdy−λydx+h.o.t. = 0 for some
λ ∈ C \Q+ and we have two possibilities. Either singularity is resonant or it is a non-resonant
Cremer type singularity. In the resonant case, by Lemma 3.6 the local holonomy of a separatrix
is finite periodic and therefore the singularity admits a holomorphic first integral (cf. [18]). In
the Cremer type singularity case the foliation is formally linearizable.
Case 2 (induction step). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blow-ups less than or equal to r. Suppose that the
fixed germ F admits a reduction of singularities consisting of r+1 blow-ups. Then we perform a

first blow-up π(1) : Ũ (1) → U at the origin and obtain F̃(1) and E(1) as in the proof of Lemma 5.5.
Nevertheless, unlike in that proof, it is not enough to prove that the desired property holds for

each singularity p̃ ∈ Sing(F̃ (1)) ⊂ E(1). Indeed, for instance, the existence of a holomorphic first
integral is not just a semi-local matter. (According to Lins Neto [17] we can construct germs of
generalized curves which can be reduced with a single blow-up, having a pre-determined set of
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generators for the holonomy group of the exceptional divisor. Thus we can consider a holonomy
group with periodic generators, but which is not abelian and therefore not finite). This shows
the necessity of considering some globalization arguments. Arguing as in the proof of Lemma 5.5

we conclude that E(1) is F̃ (1)-invariant. Furthermore, given a singularity p̃ ∈ Sing(F̃ (1)) ⊂ E(1)

of F̃ (1), for any small enough neighborhood W̃p̃ of p̃ in Ũ (1) (i) the set of leaves of F̃ (1)
∣∣
W̃p̃

that accumulate at the singularity p̃ has zero measure in W̃ and (ii) the set of leaves of F̃ (1)
∣∣
W̃p̃

which are closed in W̃p̃ has positive measure. By the induction hypothesis, this implies that the
singularity p̃ fits into one of the two following cases:

(a) (the germ of F̃ at) p̃ is fully resonant and admits a holomorphic first integral say f̃p̃ defined

in W̃p̃ if this last is small enough.

(b) (the germ of F̃ at) p̃ exhibits some (PCO) Cremer type singularity in its reduction of
singularities.
Case (i). Assume that the germ of F at the origin is fully-resonant. Now we analyze the

holonomy of the leaf E0(1) := E(1) \ Sing(F̃ (1)). Choose a regular point q̃ ∈ E0(1) and a small
transverse disc Σ to E0(1) centered at q̃. The corresponding holonomy group representation will

be denoted by H := Hol(F̃ (1),Σ, q̃) ⊂ Diff(Σ, q̃). We know that this group is finitely generated
and by the invariance of E(1) and the above argumentation we know that actually, the holonomy
group H of the exceptional divisor has a positive measure set of closed orbits. Since the virtual
holonomy group preserves the leaves of the foliation, the arguments above already show that
the virtual holonomy group Hvirt of the exceptional divisor has a positive measure set of closed
orbits. The problem is we still do not know that the virtual holonomy group is resonant so that
we cannot conclude that this virtual holonomy group is finite. Nevertheless, from Lemma 3.4
we obtain:

Claim 6.1. Any resonant finitely generated subgroup of the virtual holonomy group Hvirt is a
finite group.

Let us then proceed as follows: given the singularities {p̃1, ..., p̃m} = Sing(F̃ (1)) ⊂ E(1), by
induction hypothesis each singularity admits a local holomorphic first integral. Thus, there are
small discs Dj ⊂ E(1), centered at the p̃j and such that in a neighborhood Vj of p̃j in the blow-

up space C̃2
0 , of product type Vj = Dj × Dε, we have a holomorphic first integral gj : Vj → C,

with gj(p̃j) = 0. Fix now a point p̃0 ∈ E(1) \ Sing(F̃ (1)). Since E(1) is homeomorphic to S2,

there is a simply-connected domain Aj ⊂ E(1) such that Aj ∩ {p̃0, p̃1, ..., p̃m} = {p̃0, p̃j}, for
every j = 1, ...,m. Since Aj is simply-connected, we may extend the local holomorphic first

integral gj to a holomorphic first integral g̃j for F̃ (1) in a neighborhood Uj of Dj ∪ Aj , and we
may assume that Uj contains Vj . Now, given a local transverse section Σ0 centered at p̃0 and
contained in Uj , we may introduce the invariance group of the restriction g0

j := g̃j
∣∣
Σ0

as the group

Inv(g0
j ) := {f ∈ Diff(Σ0,p0), g0

j ◦ f = g0
j }. In other words, the invariance group of g0

j is the group

Inv(g0
j ) ⊂ Diff(Σ0,p0) of map germs that preserve the fibers of g0

j . Clearly Inv(g0
j ) is a finite

(resonant) group. Let us now denote by Inv(F̃ (1),Σ0) ⊂ Diff(Σ0,p0) the subgroup generated by

the invariance groups Inv(g0
j ), j = 1, ...,m. We call Inv(F̃ (1),Σ0) the global invariance group of

F̃ (1) with respect to (Σ0, p0). Then, from the above we immediately obtain:

Claim 6.2. The global invariance group Inv(F̃ (1),Σ0) is a resonant group.

Since Inv(F̃ (1),Σ0) preserves the leaves of F̃ (1) we have by Claim 6.1 that Inv(F̃ (1),Σ0) is
a finite group. Notice that this global invariance group contains in a natural way the local
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invariance groups of the local first integrals gj . Therefore, as observed in [18], once we have

proved that the global invariance group Inv(F̃ (1),Σ0) is finite, together with the fact that the
singularities in E(1) exhibit local holomorphic first integrals, we conclude as in [29] (or as in the

original proof in [18]) that the foliation F̃ (1) and therefore the foliation F has a holomorphic
first integral.
Case (ii). Now we assume that the germ of F at the origin is not fully-resonant. This means

that some singularity p̃ ∈ Sing(F̃(1)) in the first blow-up is not fully-resonant. Such a singularity,
by the induction hypothesis, exhibits some real non-resonant singularity in its own reduction of
singularities. Given any local separatrix Γp̃ through p̃, and a transverse disc Σ meeting Γp̃ at a

point p̃ 6= q̃ = Σ ∩ Γp̃, the virtual holonomy group Holvirt(F̃(1)p̃,Σ, q̃) is a group containing a
(PCO) Cremer map germ.

Claim 6.3. Given any separatrix Γ through the origin, and a transverse disc Σ meeting Γ at
a point 0 6= q = Σ ∩ Γ, the virtual holonomy group Holvirt(F ,Σ, q) is an abelian (formally
linearizable) group containing some (PCO) Cremer map germ.

Proof of Claim 6.3. Consider any separatrix Γ of F through the origin. Since the projective line

E(1) in the first blow-up is invariant, the lift Γ̃ is the separatrix of some singularity p̃1 of F̃(1).
If p̃1 is not fully-resonant, then by the paragraph preceding Claim 6.3, we conclude that the
virtual holonomy group associated to this separatrix Γ contains a Cremer map and has infinitely
many periodic orbits. Assume now that p̃1 is fully-resonant. In this case we have to show the

existence of a Cremer map in the virtual holonomy of the separatrix Γ̃ by “importing” this
map from some virtual holonomy of other singularity. Indeed, by hypothesis, some singularity
p̃ in the first blow-up is not fully-resonant. Therefore, its virtual holonomy relatively to the
separatrix contained in the projective line, contains a non-resonant map germ. Now, since the
projective line E(1) is invariant, given two points q̃ and q̃1, close to p̃ and p̃1 respectively, and
transverse discs Σ and Σ1 meeting E(1) at these points respectively, we can choose a simple

path α : [0, 1] → E(1) \ Sing(F̃(1)) from q̃ to q̃1. The holonomy map hα : (Σ, q̃) → (Σ1, q̃1)

associated to the path α (recall that E(1) \ Sing(F̃(1)) is a leaf of F̃(1)), induces a natural

morphism for the virtual holonomy groups α∗ : Holvirt(F̃(1),Σ1, q̃1) → Holvirt(F̃(1),Σ, q), by
α∗ : h 7→ h−1

α ◦ h ◦ hα. Since hα−1 = (hα)−1 in terms of holonomy maps, we conclude that
the above morphism is actually an isomorphism between the virtual holonomy groups. Thus,

also the virtual holonomy group associated to the separatrix Γ̃ of F̃(1) through p̃1 is a real
group of rotations and contains some irrational rotation map. Recall that the blow-up is a
diffeomorphism off the origin and off the exceptional divisor, so that the maps in the virtual

holonomy of Γ̃ induce maps in the disc Σ transverse to Γ in C2, but which are defined only
in the punctured disc, i.e., off the origin. Nevertheless, since these projected maps are one-to-
one, the classical Riemann extension theorem for bounded holomorphic maps shows that indeed
such maps induce germs of diffeomorphisms defined in the disc Σ. These diffeomorphisms are
virtual holonomy maps of the separatrix Γ of F evaluated at the transverse section Σ. Hence,

by projecting the maps in Holvirt(F̃(1),Σ, q̃) we obtain non-resonant, actually (PCO) Cremer
maps in this virtual holonomy group as stated. �

From Claim 6.3, each virtual holonomy group associated to F is abelian, formally linearizable,
containing a non-resonant map. It follows then (as in [7], Proposition 1, page 433 or Lemma 4,
page 435, for the convergent case, or also as in [28], see Proposition 3 (a) page 10 and Lemma 3
page 11, for the formal case) that F is given by a formal closed meromorphic 1-form with
simple poles. More precisely, given a holomorphic one-form Ω defining a representative of F in a

neighborhood U of the origin 0 ∈ C2, there are formal functions f̂j ∈ O2 in two complex variables
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and complex numbers λj , j = 1, ..., r; such that (in terms of formal expressions) Ω∧ ω̂ = 0 where

ω̂ =
2∑
j=1

λjdf̂j/f̂j .

Now it remains to prove that (2) implies (1). Indeed, if F admits a holomorphic first integral
then all leaves are closed, except for a finite number of leaves, those containing the separatrices.
If F is formally equivalent to a (non-dicritical) Darboux foliation, admitting a (PCO) Cremer
type singularity then clearly also F is a (non-dicritical) foliation with a positive measure of
closed leaves. This ends the proof of Theorem 1.1. �
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