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ROUND FOLD MAPS OF n–DIMENSIONAL MANIFOLDS

INTO (n− 1)–DIMENSIONAL EUCLIDEAN SPACE

NAOKI KITAZAWA AND OSAMU SAEKI

Abstract. We determine those smooth closed n–dimensional manifolds with n greater than

or equal to 4 which admit round fold maps into (n − 1)–dimensional Euclidean space; i.e.

fold maps whose critical value sets consist of disjoint spheres of dimension n − 2 isotopic to
concentric spheres. We also classify such round fold maps up to a certain natural equivalence

relation.

1. Introduction

Let M be a smooth closed manifold of dimension n ≥ 2. A smooth map f : M → Rp with
n ≥ p ≥ 1 is called a fold map if it has only fold points as its singularities (for details, see §2).
Note that fold points are the simplest singularities among those which appear generically [9] and
that fold maps are natural generalizations of Morse functions.

In [20, 22, 23, 24], the second author considered the following smaller class of generic smooth
maps. A fold map f :M → Rp is simple if for every q ∈ Rp, each component of f−1(q) contains
at most one singular point. In particular, if f |S(f) is an embedding, then f is simple, where
S(f)(⊂ M) denotes the set of singular points of f . Note that if f is a fold map, then S(f) is a
regular closed submanifold of M of dimension p− 1 and that f |S(f) is an immersion in general.
In [24], the second author proved that a closed orientable 3–dimensional manifold M admits a
fold map f : M → R2 such that f |S(f) is an embedding if and only if M is a graph manifold,
where a closed orientable 3–dimensional manifold is a graph manifold if it is the finite union of
S1–bundles over compact surfaces attached along their torus boundaries. Thus, for example,
if M is hyperbolic, then M never admits such a fold map, although every closed orientable
3–dimensional manifold admits a fold map into R2 by [16].

On the other hand, the first author introduced the notion of a round fold map [12, 13, 14]:
a smooth map f : M → Rp is a round fold map if it is a fold map and f |S(f) is an embedding
onto the disjoint union of some concentric (p−1)–dimensional spheres in Rp (for details, see §2).
Round fold maps are naturally simple. As has been studied by the first author, round fold maps
have various nice properties.

The main result of this paper is Theorem 2.5, which characterizes those smooth closed n–
dimensional manifolds that admit round fold maps into Rn−1 for n ≥ 4. We also classify such
round fold maps up to C∞ A–equivalence (see Theorems 5.4 and 5.7).

The paper is organized as follows. In §2, we prepare several definitions concerning round
fold maps together with some examples, and state our main theorem. In §3, we prove the
main theorem mentioned above. The main ingredients are the celebrated results about the
homotopy groups of diffeomorphism groups of compact surfaces [4, 5, 6, 10]. We also give a
similar characterization of those smooth orientable closed connected n–dimensional manifolds
that admit directed round fold maps into Rn−1, where a fold map is directed if the number of
regular fiber components increases toward the central region of Rn−1 (for details, see §3). In
§4, we give some related results and remarks. Finally in §5, we classify the round fold maps
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as in Theorem 2.5 up to C∞ A–equivalence using Morse functions on compact surfaces. The
key idea for the classification is to use some results about the homotopy type of the group of
diffeomorphisms of compact surfaces that preserve a given Morse function, due to Maksymenko
[17, 18].

Throughout the paper, all manifolds and maps between them are smooth of class C∞ unless
otherwise specified. For a space X, idX denotes the identity map of X. The symbol “∼=” denotes
a diffeomorphism between smooth manifolds.

2. Round fold maps

Let M be a closed n–dimensional manifold and f :M → Rp a smooth map, where we assume
n ≥ p ≥ 2. By the codimension of f we mean the integer p− n ≤ 0.

Definition 2.1. A point q ∈ M is a singular point of f if the rank of the differential
dfq : TqM → Tf(q)Rp is strictly smaller than p. We denote by S(f) the set of all singular
points of f . A point q ∈ S(f) is a fold point if f is represented by the map

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xp−1,±x2p ± x2p+1 ± · · · ± x2n)
around the origin with respect to certain local coordinates around q and f(q). Let λ be the
number of negative signs appearing in the above expression. The integer

max{λ, n− p+ 1− λ} ∈ {⌈(n− p+ 1)/2⌉, ⌈(n− p+ 1)/2⌉+ 1, . . . , n− p+ 1}
is called the absolute index of the fold point q, which is known to be well-defined, where for
x ∈ R, ⌈x⌉ denotes the minimum integer greater than or equal to x. We call a point q ∈ S(f) a
definite fold point if its absolute index is equal to n− p+ 1, otherwise an indefinite fold point.

A smooth map f : M → Rp is called a fold map if it has only fold points as its singular
points. Note that then S(f) is a closed (p − 1)–dimensional submanifold of M and that f |S(f)

is an immersion.

Note also that if p = n− 1, then the absolute index of a fold point is equal either to 1 or to 2.

Definition 2.2. Let C be a finite disjoint union of embedded (p − 1)–dimensional spheres in
Rp, p ≥ 2. We say that C is concentric if each component bounds a p–dimensional disk in Rp

and for every pair c0, c1 of distinct components of C, exactly one of them, say ci, is contained in
the bounded region of Rp \ c1−i (see Fig. 1 for p = 2). (In this case, we say that ci (or c1−i) is
an inner component (resp. an outer component) with respect to c1−i (resp. ci).) In other words,
C is isotopic to a set of concentric (p− 1)–dimensional spheres in Rp. (Note that the condition
that each component of C bounds a p–dimensional disk is redundant for p ̸= 4.)

Definition 2.3. We say that a smooth map f : M → Rp of a closed n–dimensional manifold
M into the p–dimensional Euclidean space is a round fold map if it is a fold map and f |S(f) is
an embedding onto a concentric family of embedded spheres. Note that a round fold map is a
simple stable map in the sense of [20, 22, 23, 24]. Note also that the outermost component of
f(S(f)) consists of the images of definite fold points.

Example 2.4. Let F be a compact connected m–dimensional manifold possibly with boundary
and h : F → [1/2,∞) a Morse function such that h(∂F ) = 1/2 and that h has no critical point
near the boundary. (Throughout the paper, a Morse function is a smooth function whose critical
points are all non-degenerate and have distinct critical values.) Then for p ≥ 2 we can construct
a round fold map f : M → Rp in such a way that M is the closed (m + p − 1)–dimensional
manifold (∂F ×Dp) ∪ (F × ∂Dp) = ∂(F ×Dp), that f restricted to F × {x} can be identified
with the Morse function h to the half line emanating from the origin and passing through x for
each x ∈ ∂Dp, and that f restricted to ∂F ×Dp is the projection to the second factor multiplied
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Figure 1. Family of concentric 1–dimensional spheres in R2

Example 2.4. Let F be a compact connected m–dimensional manifold possibly
with boundary and h : F → [1/2,∞) a Morse function such that h(∂F ) = 1/2
and that h has no critical point near the boundary. (Throughout the paper, a
Morse function is a smooth function whose critical points are all non-degenerate
and have distinct critical values.) Then for p ≥ 2 we can construct a round fold
map f : M → Rp in such a way that M is the closed (m + p − 1)–dimensional
manifold (∂F ×Dp) ∪ (F × ∂Dp) = ∂(F ×Dp), that f restricted to F × {x} can
be identified with the Morse function h to the half line emanating from the origin
and passing through x for each x ∈ ∂Dp, and that f restricted to ∂F ×Dp is the
projection to the second factor multiplied by 1/2, where Dp is the unit disk in Rp

centered at the origin. Such a round fold map f is said to be the result of a trivial
open book construction with respect to the Morse function h.

Note that the source manifoldM has a natural open book structure with binding
∂F × {0}.

Let Sn−1 be the unit sphere centered at the origin in Rn and γ : Sn−1 → Sn−1

the orientation reversing diffeomorphism defined by

γ(x1, x2, . . . , xn) = (−x1, x2, . . . , xn)
for (x1, x2, . . . , xn) ∈ Sn−1. In the following, we denote the total space of the
non-orientable Sn−1–bundle over S1 with monodromy γ,

[0, 1]× Sn−1/(1, q) ∼ (0, γ(q)),

by S1×̃Sn−1.
Furthermore, we denote by S2×̃S2 the total space of the unique non-trivial S2–

bundle over S2.
The main theorem of this paper is the following.

Theorem 2.5. A closed connected n–dimensional manifold with n ≥ 4 admits a
round fold map into Rn−1 if and only if it is diffeomorphic to one of the following
manifolds:

(1) standard n–dimensional sphere Sn,
(2) a connected sum of finite numbers of copies of S1 × Sn−1 or S1×̃Sn−1,
(3) Sn−2 × Σ for a closed connected surface Σ,
(4) S2×̃S2 for n = 4.
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by 1/2, where Dp is the unit disk in Rp centered at the origin. Such a round fold map f is said
to be the result of a trivial open book construction with respect to the Morse function h.

Note that the source manifold M has a natural open book structure with binding ∂F × {0}.
Let Sn−1 be the unit sphere centered at the origin in Rn and γ : Sn−1 → Sn−1 the orientation

reversing diffeomorphism defined by

γ(x1, x2, . . . , xn) = (−x1, x2, . . . , xn)
for (x1, x2, . . . , xn) ∈ Sn−1. In the following, we denote the total space of the non-orientable
Sn−1–bundle over S1 with monodromy γ,

[0, 1]× Sn−1/(1, q) ∼ (0, γ(q)),

by S1×̃Sn−1.
Furthermore, we denote by S2×̃S2 the total space of the unique non-trivial S2–bundle over

S2.
The main theorem of this paper is the following.

Theorem 2.5. A closed connected n–dimensional manifold with n ≥ 4 admits a round fold map
into Rn−1 if and only if it is diffeomorphic to one of the following manifolds:

(1) standard n–dimensional sphere Sn,
(2) a connected sum of finite numbers of copies of S1 × Sn−1 or S1×̃Sn−1,
(3) Sn−2 × Σ for a closed connected surface Σ,
(4) S2×̃S2 for n = 4.

3. Proof of Theorem 2.5

In this section, we prove Theorem 2.5.

Proof of Theorem 2.5. Let f : M → Rn−1 be a round fold map of a closed connected n–
dimensional manifold with n ≥ 4. In the following, for r > 0, Cr denotes the (n−2)–dimensional
sphere of radius r centered at the origin in Rn−1. We may assume that

f(S(f)) =

s⋃

r=1

Cr
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for some s ≥ 1 by composing a diffeomorphism of Rn−1 if necessary. Set K = f−1(0), which is a
closed submanifold of dimension 1 ofM if it is not empty. LetD be the closed (n−1)–dimensional
disk centered at the origin with radius 1/2. Then, f−1(D) is diffeomorphic to K × D, which
can be identified with a tubular neighborhood N(K) of K in M . Furthermore, the composition
ρ = π◦f :M \IntN(K)→ Sn−2 is a submersion, where π : Rn−1\IntD → Sn−2 is the standard
radial projection and ρ|∂N(K) : ∂N(K) = K × ∂D → Sn−2 corresponds to the projection to the
second factor followed by a scalar multiplication. Hence, ρ is a smooth fiber bundle. In other
words, M admits an open book structure with binding K. The fiber (or the page) is identified
with F = f−1(J), where

J = [1/2,∞)× {0} ⊂ R× Rn−2 = Rn−1,

and it is a compact surface possibly with boundary. As we are assuming that M is connected
and n ≥ 4, so is F . Note that h = f |F : F → J is a Morse function with exactly s critical points.

Note that all these arguments work even when K = ∅. In this case, F is a closed connected
surface and M is the total space of an F–bundle over Sn−2.

In the following, A denotes the annulus S1 × [−1, 1], and P denotes the compact surface
obtained from the 2–sphere by removing three open disks: in other words, P is a pair of pants.
Furthermore, B denotes the compact surface obtained from the Möbius band with an open disk
removed.

Set Mr = f−1(C[r−(1/2),r+(1/2)]), r = 1, 2, . . . , s, and M0 = f−1(C[0,1/2]), where

C[a,b] = {(x1, x2, . . . , xn−1) ∈ Rn−1 | a ≤
√
x21 + x22 + · · ·+ x2n−1 ≤ b}

for 0 ≤ a < b. Note that for r ≥ 1, the map ρ|Mr
:Mr → Sn−2 is a smooth fiber bundle and the

fiber is diffeomorphic to D2, P or B together with a finite number of copies of A (see [25], for
example).

Now, suppose that n ≥ 5. Then by [4, 5, 6, 10], the identity component of the group of
diffeomorphisms of D2, P , B and A all have vanishing homotopy groups of dimension n − 3.
Therefore, the above bundles are all trivial. Furthermore, for obtaining M \ IntN(K), we
need to glue the pieces by bundle maps with fiber a disjoint union of circles. Again, as the
identity component of the group of diffeomorphisms of S1 has vanishing homotopy group of
dimension n− 2, we see that the fiber bundle ρ :M \ IntN(K)→ Sn−2 is trivial. Moreover, the
diffeomorphism used for attaching N(K) to M \ IntN(K) is again standard. As a result we see
that M is diffeomorphic to the union

(K ×Dn−1) ∪∂ (F × Sn−2) = (∂F ×Dn−1) ∪∂ (F × ∂Dn−1),

where the attaching diffeomorphism is the standard one. This implies that M is diffeomorphic
to ∂(F ×Dn−1).

If F has no boundary, then M is diffeomorphic to F × Sn−2, where F is a closed connected
surface. If F has non-empty boundary, then F×Dn−1 is diffeomorphic to an (n+1)–dimensional
manifold obtained by attaching some 1–handles to Dn+1. Therefore, its boundary is diffeomor-
phic to the connected sum of finite numbers of copies of S1 × Sn−1 or S1×̃Sn−1.

Now suppose that n = 4. In this case, P–bundles and B–bundles over S2 are all trivial, while
D2–bundles and A–bundles may possibly be non-trivial. If F is a closed connected surface, then
M is diffeomorphic to the total space of an F–bundle over S2. If F is diffeomorphic to S2, then
we see that M is diffeomorphic either to S2 × S2 or to S2×̃S2. If F is not diffeomorphic to
S2, then a P–bundle piece or a B–bundle piece necessarily appears, and such a bundle must be
trivial. Since the boundary S1–bundle (or S1–bundles) of an arbitrary non-trivial D2–bundle
(resp. A–bundle) over S2 is (resp. are) always non-trivial, no such non-trivial bundle appears.
This implies that the F–bundle over S2 must be trivial. Therefore, M is diffeomorphic to S2×Σ
for a closed connected surface Σ.
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If F has non-empty boundary, then as N(K) is a trivial bundle over D, the boundary of
M \ IntN(K) is a trivial ∂F–bundle over S2. Then by [6], we see that the F–bundle over S2,
ρ : M \ IntN(K)→ S2, is trivial. Therefore, by an argument similar to the above, we see that
M is diffeomorphic to the connected sum of finite numbers of copies of S1 × S3 and S1×̃S3.

Conversely, suppose that M is one of the manifolds listed in the theorem.
If M is the standard n–dimensional sphere Sn, then the standard projection Rn+1 → Rn−1

restricted to the unit sphere Sn is a round fold map: in fact, it is a so-called special generic map
(see [21], for example), and has only definite fold as its singularities.

IfM is a connected sum of a copies of S1×Sn−1 and b copies of S1×̃Sn−1, then let us consider
the compact surface with boundary, say F , obtained from the 2–disk by attaching a orientable
1–handles and b non-orientable 1–handles along the boundary. Then,

(F × Sn−2) ∪ (∂F ×Dn−1) = ∂(F ×Dn−1)

admits a round fold map into Rn−1, as is seen from the construction given in Example 2.4, and
this manifold is diffeomorphic to M .

If M = Sn−2×Σ for a closed connected surface Σ, then it obviously admits a round fold map
into Rn−1, as is seen by using the construction given in Example 2.4 again.

Finally, if n = 4 and M = S2×̃S2, then it admits a special generic map into R3 which is also
a round fold map [21].

This completes the proof. □

Now let us discuss directed round fold maps. Let f : M → Rn−1 be a round fold of a closed
orientable n–dimensional manifoldM . For a component c of f(S(f)), take a small arc α ∼= [−1, 1]
in Rn−1 that intersects f(S(f)) exactly at one point in c transversely. We also assume that the
point α ∩ f(S(f)) is not an end point of α. Then, f−1(α) is a compact surface with boundary
f−1(a) ∪ f−1(b), which is diffeomorphic to a finite disjoint union of circles, where a and b are
the end points of α. Furthermore, f |f−1(α) : f

−1(α) → α can be regarded as a Morse function

with exactly one critical point. As M is orientable, we see that f−1(α) is diffeomorphic to the
union of D2 (or P ) and a finite number of copies of A (see [25], for example). Therefore, the
number of components of f−1(a) differs from that of f−1(b) exactly by one. If f−1(a) has more
components than f−1(b), then we normally orient c from b to a: otherwise, we orient c from a
to b. It is easily shown that this normal orientation is independent of the choice of α. In this
way, each component of f(S(f)) is normally oriented. If the normal orientation points inward,
then the component is said to be inward-directed : otherwise, outward-directed.

Definition 3.1. Let f : M → Rn−1 be a round fold map of a closed orientable n–dimensional
manifold. We say that f is directed if all the components of f(S(f)) are inward-directed. It
is easy to see that a round fold map f is directed if and only if the number of components of
a regular fiber over a point in the innermost component of Rn−1 \ f(S(f)) coincides with the
number of components of S(f).

Then, as a corollary of the above proof of Theorem 2.5, we have the following.

Theorem 3.2. A closed connected orientable n–dimensional manifold with n ≥ 4 admits a
directed round fold map into Rn−1 if and only if it is diffeomorphic to one of the following
manifolds:

(1) standard n–dimensional sphere Sn,
(2) connected sum of a finite number of copies of S1 × Sn−1.

Proof. Suppose that f :M → Rn−1 is a directed round fold map of a closed connected orientable
n–dimensional manifold. Then, the surface F given in the proof of Theorem 2.5 must be a
compact orientable surface with non-empty boundary of genus zero, since f is directed. Then,
we see that M must be diffeomorphic to Sn or to the connected sum of a finite number of copies
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of S1 × Sn−1. Conversely, we see that Sn and the connected sum of a finite number of copies
of S1 × Sn−1 admit directed round fold maps by using the open book construction described in
Example 2.4 associated with an appropriate Morse function on a compact orientable surface of
non-empty boundary of genus zero. (More precisely, we use a Morse function on such a surface
such that the number of components of level sets increases as the level value decreases.) This
completes the proof. □

For example, for a closed connected orientable surface Σ, the manifold Sn−2 × Σ, n ≥ 4,
admits a round fold map into Rn−1, but does not admit a directed one.

4. Remarks and related results

As a direct corollary to Theorem 2.5, we immediately get the following.

Corollary 4.1. A closed n–dimensional manifold with n ≥ 4 homotopy equivalent to Sn admits
a round fold map into Rn−1 if and only if it is diffeomorphic to the standard n–dimensional
sphere.

Note that by [7], every n–dimensional homotopy sphere admits a fold map into Rn−1.

Remark 4.2. The manifolds appearing in Theorem 2.5 are all null-cobordant. In particular,
their Stiefel–Whitney numbers all vanish, and their signatures all vanish when the dimension is
divisible by 4 and the manifold is orientable. Compare this with [20, Proposition 3.12].

Remark 4.3. The fundamental groups of the manifolds appearing in Theorem 2.5 are either
trivial, free, or a surface fundamental group.

Remark 4.4. In [22, Proposition 3.6], it has been given a topological characterization of simply
connected closed 4–dimensional manifolds that admit simple fold maps into R3. Compare this
with our Theorem 2.5.

Remark 4.5. We have seen that if a closed connected n–dimensional manifold admits a round
fold map into Rn−1, then the manifold admits an open book structure over Sn−2.

On the other hand, as our proof shows, for n ≥ 4, if a closed connected n–dimensional
manifold M admits an open book structure over Sn−2 with non-empty binding, then it must be
diffeomorphic to one of the following manifolds:

(1) standard n–dimensional sphere Sn,
(2) a connected sum of finite numbers of copies of S1 × Sn−1 or S1×̃Sn−1.

In particular, the manifold M admits a round fold map into Rn−1.
If M admits an open book structure over Sn−2 with empty binding, then the manifold is

the total space of a Σ–bundle over Sn−2 for some closed connected surface Σ. Recall that by
[4, 5, 6, 10], we have πn−3(Diff0(Σ)) = 0 except for the following cases, where Diff0(Σ) denotes
the identity component of the group of diffeomorphisms of Σ:

(a) Σ = S2: πn−3(SO(3)),
(b) Σ = T 2 and n = 4: π1(T

2) ∼= Z⊕ Z,
(c) Σ = K2 and n = 4: π1(SO(2)) ∼= Z,

where T 2 is the 2–dimensional torus and K2 is the Klein bottle. In case (a), M is the total
space of an S2–bundle over Sn−2. In case (b) (resp. (c)), M is the total space of a T 2–bundle
(resp. K2–bundle) over S2. Otherwise, M is diffeomorphic to Σ × Sn−2 and it admits a round
fold map into Rn−1.

Remark 4.6. For n = 3, a characterization of closed orientable 3–dimensional manifolds that
admit round fold maps into R2 has been obtained in [15]. For non-orientable 3–dimensional
manifolds, such a characterization has not been known, as far as the authors know.
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Those closed orientable 3–dimensional manifolds which admit directed round fold maps into
R2 have also been characterized in [15].

Let f : M → Rn−1 be a round fold map of a closed connected n–dimensional manifold M .
We denote by n0(f) (resp. n1(f)) the number of connected components of S(f) with absolute
index 2 (resp. 1).

Proposition 4.7. When n = dimM is even, the Euler characteristic of M is equal to

2(n0(f)− n1(f)).
Proof. We may assume that f(S(f)) is a concentric family of spheres in Rn−1. Then,
ℓ ◦ f : M → R is a Morse function on M , where ℓ is a projection to a real line. We see
that the number of critical points of ℓ ◦ f with even indices equals to 2n0(f) and that of odd
indices equals to 2n1(f). Then, the result follows. □

In the above proof, we see that the indices of the critical points of the Morse function ℓ ◦ f
are 0, 1, 2, n− 2, n− 1 or n. In particular, b3(M) = b4(M) = · · · = bn−3(M) = 0 when n ≥ 6,
where bj(M) is the j–th Betti number of M (for any coefficient).

Remark 4.8. Proposition 4.7 is also a consequence of a theorem of Fukuda [8].

Example 4.9. Let us consider an arbitrary (n − 2)–dimensional closed connected manifold X
which embeds into Rn−1, n ≥ 4, such that the closed connected n–dimensional manifold
M = Σ × X is not diffeomorphic to any manifold listed in Theorem 2.5, where Σ is a closed
connected surface not diffeomorphic to S2. (For example, consider X = S1 × Sn−3.) Then,
M = Σ×X admits a fold map f :M → Rn−1 such that f |S(f) is an embedding onto a union of

parallel copies ofX embedded in Rn−1. (For example, for an arbitrary Morse function h : Σ→ R,
consider the composition

M = Σ×X h×idX−−−−−→R×X ↪→ Rn−1,

where the last map is an embedding.) However, M does not admit a round fold map into Rn−1

according to our Theorem 2.5.
Recall that for n = 3, if a closed orientable 3–dimensional manifold admits a simple fold map

into R2, then it also admits a round fold map into R2 as has been shown in [15]. The above
example shows that this is not the case for n ≥ 4 in general.

5. Classification of round fold maps

In this section, we consider the classification problem of round fold maps of closed n–dimensional
manifolds into Rn−1, n ≥ 4.

We recall the following standard definition.

Definition 5.1. Let fi :Mi → Ni be smooth maps of smooth manifolds, i = 0, 1. We say that
f0 and f1 are C∞ A–equivalent if there exist diffeomorphisms ψ : M0 → M1 and Ψ : N0 → N1

such that f1 = Ψ ◦ f0 ◦ ψ−1.
Furthermore, we say that f0 and f1 are C∞ R–equivalent if N0 = N1 and there exists a

diffeomorphism ψ :M0 →M1 such that f1 = f0 ◦ ψ−1.

For our classification of round fold maps up to A–equivalence, we will need the following.

Definition 5.2. Let f : M → Rn−1 be a round fold map of a closed connected n–dimensional
manifold. Then, there exists a diffeomorphism Φ : Rn−1 → Rn−1 such that the critical value
set of the round fold map Φ ◦ f coincides with ∪sr=1Cr, where s is the number of connected
components of S(f). For J = [1/2,∞) × {0} ⊂ R × Rn−2 = Rn−1, we set F = (Φ ◦ f)−1(J),
which is a compact surface and is connected if n ≥ 4. Then the restriction Φ ◦ f |F : F → J is a
Morse function. We call F a page of f and the function Φ◦f |F a page Morse function associated
with f .
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Lemma 5.3. Let f : M → Rn−1 be a round fold map of a closed connected n–dimensional
manifold. Then, the page Morse functions associated with f are unique up to C∞ R–equivalence.
Proof. Let Φi : Rn−1 → Rn−1 be diffeomorphisms such that the critical value set of the round
fold map Φi ◦ f coincides with ∪sr=1Cr, where s is the number of connected components of S(f),
i = 0, 1. Set J0 = J , J1 = Φ0 ◦ Φ−1

1 (J0), Fi = (Φ0 ◦ f)−1(Ji) and hi = Φ0 ◦ f |Fi
, i = 0, 1. Note

that h0 : F0 → J0 is a page Morse function associated with f , while F1 = (Φ1 ◦ f)−1(J0) is
another page for f and Φ1 ◦ Φ−1

0 ◦ h1 : F1 → J0 is another page Morse function associated with
f .

By integrating a certain vector field tangent to ∪sr=1Cr, we can construct a smooth isotopy
Ht : Rn−1 → Rn−1, t ∈ [0, 1], with the following properties:

H0 = idRn−1 ,(5.1)

Ht(Cr) = Cr, r = 1, 2, . . . , s,(5.2)

H1(J0) = J1,(5.3)

H1|J0
= Φ0 ◦ Φ−1

1 |J0
.(5.4)

Then, by lifting the vector field generated by the isotopy {Ht}t∈[0,1] with respect to Φ0 ◦ f , we
can construct a smooth isotopy φt :M →M , t ∈ [0, 1], such that the following holds:

φ0 = idM ,(5.5)

φt(S(f)) = S(f),(5.6)

φ1(F0) = F1,(5.7)

Ht ◦ Φ0 ◦ f = Φ0 ◦ f ◦ φt, t ∈ [0, 1].(5.8)

Then, we see that

Φ0 ◦ f ◦ φ1|F0 = H1 ◦ Φ0 ◦ f |F0

= Φ0 ◦ Φ−1
1 ◦ Φ0 ◦ f |F0

by virtue of (5.8) and (5.4) above. This implies that

Φ1 ◦ f ◦ φ1|F0 = Φ0 ◦ f |F0 .

Hence, the two page Morse functions associated with f are C∞ R–equivalent. □

Then, we have the following classification theorem.

Theorem 5.4. Let fi : Mi → Rn−1 be round fold maps of closed connected n–dimensional
manifolds with n ≥ 5, i = 0, 1. Then f0 and f1 are C∞ A–equivalent if and only if their page
Morse functions are C∞ R–equivalent.
Proof. Necessity follows easily from Lemma 5.3.

Conversely, suppose that the page Morse functions of fi, i = 0, 1, are C∞ R–equivalent. We
may assume that fi(S(fi)), i = 0, 1, are of the form ∪sr=1Cr. Set J = [1/2,∞)×{0} ⊂ R×Rn−2,
Fi = f−1

i (J) and hi = fi|Fi
: Fi → J , i = 0, 1. By assumption, there exists a diffeomorphism

φ : F0 → F1 such that f0 = f1 ◦ φ.
Let us consider the decomposition

(5.9) Rn−1 = D ∪R ∪ L,
where D is the closed disk in Rn−1 centered at the origin with radius 1/2,

R = ([0,∞)× Rn−2) \ IntD and L = ((−∞, 0]× Rn−2) \ IntD
⊂ R× Rn−2 = Rn−1.

Let us also consider the associated decomposition

M = f−1
i (D) ∪ f−1

i (R) ∪ f−1
i (L),
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i = 0, 1. As has been observed in the proof of Theorem 2.5, f−1
i (D) is either empty or the total

space of a trivial fiber bundle over D, where the fiber is a finite union of circles, while f−1
i (R)

and f−1
i (L) are the total spaces of locally trivial fiber bundles over the (n−2)–dimensional disk,

i = 0, 1.
Let TR : [1/2,∞)×Dn−2 → R (or TL : [1/2,∞)×Dn−2 → L) be the diffeomorphism defined

by TR(r, x) = rx (resp. TL(r, x) = −rx), where we identify Dn−2 with

{(x1, x2, . . . , xn−1) ∈ Rn−1 |x21 + x22 + · · ·+ x2n−1 = 1, x1 ≥ 0} ⊂ Sn−2.

Then, the map

T−1
R ◦ fi|f−1

i (R) : f
−1
i (R)→ [1/2,∞)×Dn−2

can be identified with a family of Morse functions parametrized byDn−2, i = 0, 1. More precisely,
to each x ∈ Dn−2 is associate the Morse function

η1 ◦ T−1
R ◦ fi|Fx,i

: Fx,i → [1/2,∞),

where Fx,i = f−1
i (TR([1/2,∞)×{x})) and η1 : [1/2,∞)×Dn−2 → [1/2,∞) is the projection to

the first factor. By using a vector field argument (see, for example, [1, 3]), we can construct a
trivializing diffeomorphism φ̃i : Fi×Dn−2 → f−1

i (R) in such a way that we have the commutative
diagram

f−1
i (R)

φ̃i←−−−− Fi ×Dn−2 η̃2,i−−−−→ Dn−2

yfi

yhi×idDn−2

yidDn−2

R
TR←−−−− [1/2,∞)×Dn−2 η2−−−−→ Dn−2,

where η2 : [1/2,∞) × Dn−2 → Dn−2 and η̃2,i : Fi × Dn−2 → Dn−2 are the projections to the

second factors, i = 0, 1. A similar argument applies to f−1
i (L) as well.

By our assumption together with the above observation, we see that

f0 : f−1
0 (R)→ R and f0 : f−1

0 (L)→ L

are C∞ R–equivalent to
f1 : f−1

1 (R)→ R and f1 : f−1
1 (L)→ L,

respectively.
Now, through the above trivializations, the attaching diffeomorphisms between f−1

i (R) and

f−1
i (L), i = 0, 1, are identified with families of diffeomorphisms of compact surfaces that preserve
the page Morse functions, parametrized by ∂Dn−2 = Sn−3. By a result of Maksymenko [17, 18],
the space of such diffeomorphisms has vanishing (n−3)–th homotopy group, as we are assuming
n ≥ 5. This implies that, by changing the above trivializations slightly near the attaching
parts, we may assume that the attaching diffeomorphisms for f0 and f1 coincide with each
other. Therefore, we can construct a diffeomorphism f−1

0 (R ∪ L) → f−1
1 (R ∪ L) that gives

R–equivalence between f0 and f1 over R ∪ L.
Now, as f0 and f1 are trivial fiber bundles over D, it is easy to extend this diffeomorphism

to a diffeomorphism M0 → M1 that gives R–equivalence between f0 and f1 over Rn−1. This is
because the group of diffeomorphisms of the circle has trivial (n− 2)–th homotopy group. This
completes the proof. □

According to the above proof, round fold maps as in Theorem 5.4 are always constructed
through a trivial open book construction as in Example 2.4 up to A–equivalence.
Remark 5.5. As the above proof shows, if the given round fold map f is of the standard form
(i.e., if f(S(f)) is of the form ∪sr=1Cr), then its C∞ R–equivalence class is determined by the
R–equivalence class of its page Morse function.
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Remark 5.6. As has been shown in [11] (see also [2, proof of Theorem 3.8]), two Morse functions
on a compact connected surface are C∞ A–equivalent if and only if their associated functions
on the Reeb graphs (with orientation reversing information when the source surface is non-
orientable) are topologically equivalent. A Reeb graph is the quotient space of the source surface
obtained by identifying each connected component of level sets to a point, and such a space is
known to have the structure of a finite graph (see [19]). In particular, such Morse functions
can be classified up to C∞ A–equivalence by using purely combinatorial objects. If we use
appropriate functions on Reeb graphs, classification up to C∞ R–equivalence is also possible.

Now, let us consider the case where n = 4. In this case, we have the following.

Theorem 5.7. Let fi : M → R3 be round fold maps of a closed connected 4–dimensional
manifold M , i = 0, 1. Then f0 and f1 are C∞ A–equivalent if and only if exactly one of the
following holds.

(1) Both of f0 and f1 have indefinite fold points and the page Morse functions of f0 and f1
are R–equivalent.

(2) Both of f0 and f1 have only definite fold points as their singularities and M is diffeo-
morphic to S4.

(3) Both of f0 and f1 have only definite fold points as their singularities, M is diffeomorphic
to an S2–bundle over S2, and the self-intersection numbers of the components of S(f0)
coincide with those of S(f1) up to order, with respect to a fixed orientation of M .

Remark 5.8. In Theorem 5.7 (3), each of S(fi), i = 0, 1, consists exactly of two components
and their self-intersection numbers are of the form ki,−ki for some integer ki. Note that M
is diffeomorphic to S2 × S2 if the self-intersection numbers are even and to S2×̃S2 if the self-
intersection numbers are odd.

Proof of Theorem 5.7. Necessity is clear.
As to sufficiency, when both of f0 and f1 have indefinite fold points, the proof is the same

as that of Theorem 5.4. This is because the space of the Morse functions preserving the page
Morse function is contractible in this case [17, 18].

When both of f0 and f1 have only definite fold as their singularities, then as the page function,
we have the following two possibilities: one is the Morse function on D2 with exactly one critical
point, which is the maximum point, and the other is the Morse function on S2 with exactly two
critical points, which are the minimum and the maximum points.

In the former case, the identity component of the group of diffeomorphisms of D2 preserving
the Morse function has the homotopy type of S1 [17, 18]. However, if we use an attaching dif-
feomorphism for f−1

i (R) and f−1
i (L) corresponding to a non-trivial element of its fundamental

group, then the boundary 3–dimensional manifold is not diffeomorphic to S2 × S1, which is a
contradiction as f−1

i (D) is a trivial circle bundle over D, i = 0, 1. (Here, we use the decomposi-
tion of R3 as in (5.9).) Therefore, in this case, f0 and f1 are necessarily A–equivalent and M is
diffeomorphic to S4.

In the latter case, f−1
i (D) is empty and S(fi) consists exactly of two components, i = 0, 1.

Let S+
i (or S−

i ) denote the component of S(fi) which is mapped by fi to the outer (resp.

inner) component of fi(S(fi)) in R3. The attaching diffeomorphism for f−1
i (R) and f−1

i (L)
corresponds to an element of the fundamental group of the identity component of the group of
diffeomorphisms of the circle, which is isomorphic to the infinite cyclic group Z. Let σi ∈ Z
denote the corresponding element, i = 0, 1. Here, we may assume that the self-intersection
number of S+

i in M coincides with σi. Then, the self-intersection number of S−
i in M are equal

to −σi, i = 0, 1. Recall that by our assumption, we have σ0 = ±σ1. If σ0 = σ1, then we can
easily construct an orientation preserving self-diffeomorphism ofM that gives the R–equivalence
between f0 and f1. If σ0 = −σ1, then we consider an orientation reversing diffeomorphism of
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S2 that preserves the page Morse function for f0, and this gives rise to an orientation reversing
self-diffeomorphism of M that preserves f0. Then, using this diffeomorphism, we may assume
that σ0 = σ1. Therefore, in this case as well, we conclude that f0 and f1 are R–equivalent. This
completes the proof. □

It would be a difficult but interesting problem to classify round fold maps on closed orientable
3–dimensional manifolds into R2 (refer to [15]) up to A–equivalence. Note that for simple stable
maps of closed orientable 3–dimensional manifolds into R2, a classification result has been given
in [24]: however, the classification is up to a certain equivalence strictly weaker than the A–
equivalence, and the result is given in terms of links in the 3–dimensional manifolds.
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