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KSB SMOOTHINGS OF SURFACE PAIRS

JÁNOS KOLLÁR

Abstract. We describe KSB smoothings of log canonical surface pairs (S,D), where D is a

reduced curve. In sharp contrast with the D = ∅ case, cyclic quotient pairs always have KSB

smoothings, usually forming many irreducible components.

At the boundary of the moduli space of smooth surfaces, we find surfaces with log canonical
singularities. Quotient singularities form the largest—and usually most troublesome—subclass.

The semi-universal deformation space Def(S) of a quotient singularity is quite complicated.
The irreducible components were enumerated in [KSB88, Ste91a]; their number grows exponen-
tially with the multiplicity. However, for the moduli of surfaces, we are interested only in those
deformations of S for which KS lifts to a Q-Cartier divisor; see Paragraph 11. These are now
called KSB deformations, replacing the name qG-deformations used in [KSB88].

By [LW86, KSB88], quotient singularities either have no KSB smoothings, or the KSB smooth-
ings form a single, easy to describe, irreducible component of the deformation space; see Para-
graph 12.

The aim of this note is to study the analogous question for the moduli theory of simple nor-
mal crossing surface pairs. The normal singularities at the boundary are log canonical pairs
(S,D), where S itself has quotient singularities whenever D ̸= ∅. For such pairs, we enumer-
ate the irreducible components of DefKSB(S,D)—the semi-universal parameter space of KSB
deformations—where we now require KS +D to lift to a Q-Cartier divisor; see Definitions 15–
17.

1. Irreducible components of KSB deformation spaces

Singularities of 2-dimensional log canonical pairs (0 ∈ S,D) with D ̸= ∅ come in 3 types. If
the singularity is a cyclic quotient, then D can have 1 or 2 local branches, and if the singularity
is a dihedral quotient, then D has 1 local branch; see Notation 14 for details. The 3 types behave
quite differently. We use the dual graph—as in Notation 14—to specify a pair (S,D).

Theorem 1. The irreducible components of

DefKSB

(
• − c1 − c2 − · · · − cs − •

)
are in one-to-one correspondence with the irreducible components of

Def
(
c1 − c2 − · · · − cs

)
,

and, in each of them, a general deformation is smooth.

Theorem 2. The irreducible components of

DefKSB

(
2

2 − c1 − c2 − · · · − cs − •

)
are in one-to-one correspondence with the irreducible components of

Def
(
c2 − · · · − cs

)
, (note that c1 is omitted)

and, in each of them, a general deformation has 2 singularities, which are (2 − •).
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Theorem 3. The singularities (c1 − c2 − · · · − cs − •) are KSB rigid.

Remarks 4.

(4.1) The dimensions of the irreducible components of DefKSB(S,D) are computed in (44) for
the cyclic cases, and in (46) for the dihedral cases.

(4.2) For the cyclic quotients in Theorem 1, the image of

DefKSB

(
• − c1 − · · · − cs − •

)
→ Def

(
c1 − · · · − cs

)
is nowhere dense, with a few exceptions; see (45).

(4.3) For the dihedral pairs (S,D) in Theorem 2, only some irreducible components of Def(S)
contain an irreducible component of DefKSB(S,D), see (31).

(4.4) For quotient singularities S, [KSB88, 3.14] gives an algorithm to enumerate the irre-
ducible components of Def(S), though in practice this can be very cumbersome if there are
many exceptional curves. For cyclic quotients S as in Theorem 1, [Ste91a] gives a better
method. As a consequence, [Ste91a] shows that if S has multiplicity m = m(S), then Def(S)

has at most 1
m−1

(
2(m−2)
m−2

)
irreducible components, and equality holds for ‘most’ cyclic quo-

tients of a given multiplicity. Note that m(S) = 2 +
∑

(ci − 2).

5 (Sketch of the proofs). Let (S,D) be a pair as in Theorems 1–3. Although we do it in different
order, the steps of the proof are the following.

Step 5.1. Fix an irreducible component of DefKSB(S,D), and let g : (S,D) → (0,D) be a
general 1-parameter deformation in it. That is, the fiber over 0 is (S,D)0 ∼= (S,D), and D
denotes either a complex disc or the germ of a smooth curve. We prove in (48) that the general
fiber of g is smooth in the cyclic case, and has at worst A1 singularities in the dihedral case.

Step 5.2. As we recall in (28), by [KSB88, 3.5] there is a proper, birational morphism
π : SP → S such that

• KSP
is Q-Cartier, π-ample, and

• the central fiber SP := (g◦π)−1(0) has only Du Val and Â2/ 1
rn2 (1, arn−1) singularities;

see Notation 8.

The latter are called T-singularities (12.1), and SP → S is called a P-modification, see Defini-
tion 29.

Step 5.3. LetDP denote the birational transform ofD on SP , andDP the birational transform
of D on SP . We show in (36) that DP |SP

= DP +EP , where EP ⊂ SP is the reduced exceptional
divisor.

Step 5.4. KSP
+DP ∼Q π∗(KS +D

)
, hence both KSP

and KSP
+DP are Q-Cartier. Thus

g ◦ π : (SP +DP ) → D is a KSB deformation of SP and also of (SP , DP + EP ). We call these
doubly KSB deformations in Definition 16. Basic results going back to [Gra72, Wah76, Bin87]
show that a semi-universal deformation space—denoted by DefdKSB(SP , DP +EP )—exists; see
Paragraph 17. Combining Lemmas 18 and 47 shows that it is smooth.

Step 5.5. A well known argument (34) gives a natural morphism

τP : DefdKSB(SP , DP + EP )→ DefKSB(S,D),

which is finite and birational onto our irreducible component; see (36) for details.

Step 5.6. In the cyclic case of Theorem 1, a quick argument shows that every P-modification
leads to an irreducible component of DefKSB(S,D), see (44). In the dihedral case of Theorem 2,
the irreducible components of Def(S) are enumerated in (31), following [Ste91a, Ste93]. Then
in (46) we describe which P-modification leads to an irreducible component of DefKSB(S,D).
Putting these together gives Theorem 2. Finally Theorem 3 directly follows from [Kol23, 2.23],
see (20.1). □
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6 (Other results). There are several variants and generalizations.

Fractional coefficients 6.1. If we look at pairs (S, cD) for 1
2 < c < 1, the situation changes

dramatically; see Section 8 for details.
For the pairs (S,D) as in Theorem 1, there are either no KSBA deformations (as in Defini-

tion 15) for any c, or a single irreducible component for every c; see Corollary 53. For the pairs
(S,D) as in Theorem 2, there are no KSBA deformations; see Lemma 54. For almost all of the
pairs (S, cD) as in Theorem 3, there are either no KSBA deformations for any c, or a single
irreducible component for a unique value of c, see (56).

These describe KSBA deformations of all pairs (S, cD) for c ∈ ( 56 , 1], though the answer is
not explicit in terms of the dual graph. Example 56 shows that c can be arbitrarily close to 1.

For c ∈ [ 12 , 1], all lc pairs (S, cD) are listed in [Kol13, Sec.3.3]. The method should give a full
answer for all of them. I checked only some examples, but did not find any other pairs (S, cD)
with a KSBA smoothing and 1

2 < c < 1. Examples with c = 1
2 are given in (58).

Higher dimensions 6.2. For an lc pair (X,D) of arbitrary dimension, [KK23] shows that a
flat deformation is a KSB deformation iff the KSB condition (15) is satisfied by a general surface
section. Thus our results give information not only for surface pairs, but for higher dimensions
as well.

Infinitesimal computations 6.3. Usually the space of KSB deformations is not reduced. For
cyclic pairs, the method of [AK19] can be used to determine its tangent space, but a complete
description is known only in a handful of cases.

Other rational singularities 6.4. Many of the results apply to more general rational singular-
ities S. However, not every irreducible component of Def(S) is obtained from a P-modification.

The conjectures in [Kol91, Sec.6] ask whether every irreducible component of Def(S) is ob-
tained in a similar way, using a notion of P-modification that is more general than the one in
Definition 29. A positive answer has been known for quotient singularities [KSB88, 3.9] and for
points of multiplicity ≤ 4 [dJvS91, Ste91b]. The recent papers [PS22, JS23] develop a method
to prove the conjecture in many new cases. In [PS22] this is illustrated by the W (p, q, r) series
of singularities, but their method applies more broadly. (The W (p, q, r) series was discovered by
Wahl around 1980, see [Wah21] for a recent survey.) In [JS23] the conjecture is proved for most
weighted homogeneous singularities.

Especially for the M-modification version as in [BC94] or (34), the singularities with a rational
homology disc smoothing—classified by [BS11]—may form the natural class to work with.

2. Quotient singularities

The classification of surface quotient singularities and their dual graphs are given in [Bri68].
We need detailed information about the cyclic (type A) and dihedral (type D) cases; we recall
these and fix our notation. The tetrahedral, octahedral and icosahedral quotients (type E) will
appear only in examples.

Notation 7. We work over the complex numbers and let Â2 denote the germ of A2 at the origin.
For our purposes, we may work with a complex analytic germ, the spectrum of C[[x, y]], or the
spectrum of the Henselisation of C[x, y](x,y). For most situations in this paper one can choose

global coordinates, so we can even work with 0 ∈ A2.
Sn,q and Sd

n,q will denote the cyclic and dihedral quotients as in Notation 8 and 10. The

curves Bn,q ⊂ Sn,q, Dn,q ⊂ Sn,q and Dd
n,q ⊂ Sd

n,q are defined in (14).
The minimal resolution of a surface S is denoted by µ : Sm → S. For a curve D ⊂ S, its

birational transform on Sm is denoted by Dm.
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Notation 8 (Cyclic quotients). We write Sn,q := Â2/ 1
n (1, q), where the group action is

(x, y) 7→ (ϵx, ϵqy) for some primitive nth root of unity ϵ. The action is free outside the ori-
gin iff (n, q) = 1. In general, if n = n1(n, q), q = q1(n, q), then

Â2/ 1
n (1, q)

∼= Â2/ 1
n1

(1, q1).

Let q′ denote the multiplicative inverse of q modulo n. Then Sn,q
∼= Sn,q′ ; the isomorphism

interchanges the coordinates.
For the dual graph of the minimal resolution, we use ci := −(C2

i ), the negative of the self-
intersection, to denote the vertex corresponding to the exceptional curve Ci ⊂ Sm

n,q. For Sn,q

the dual graph is
D(Sn,q) = c1 − c2 − · · · − cs,

where the ci are obtained from the continued fraction expansion

n

q
= c1 −

1

c2 −
1

c3 − · · ·
We use [c1, . . . , cs] to denote this continued fraction, and S(c1, . . . , cs) ∼= Sn,q the resulting
singularity.

9 (Resolution of cyclic quotients). An explicit construction of the minimal resolution is in
[Jun08]; see [Rei93] for a very accessible treatment. Here we use an inductive procedure as
in [Kol07, 2.31].

For A2
xy/

1
n (1, q), the quotient of the blow-up of the ideal sheaf (xq, y) gives a proper, birational

morphism π1 : S1 → A2
xy/

1
n (1, q). It is covered by 2 charts

(9.1) (Singular chart) A2
x1y1

/ 1
q (1,−n), where x = x1y

1/n
1 , y = y

q/n
1 .

(9.2) (Smooth chart) A2
x2y2

, where x = x
1/n
2 , y = y2x

q/n
2 .

Iterating this blow-up gives the minimal resolution. The π1-exceptional curve E1 is (y1 = 0)
(resp. (x2 = 0)). Thus the extended dual graph is

(x− axis) − c1 − c2 − · · · − cs − (y − axis). (9.3)

Notation 10 (Dihedral quotients). Let Sd
n,q denote the singularity whose minimal resolution

dual graph is
2

2 − c1 − c2 − · · · − cs

where n
q = [c1, . . . , cs]. The curves marked 2 are denoted by C ′

0, C
′′
0 . We also use the notation

S(22, c1, . . . , cs) := Sd
n,q.

One usually assumes s ≥ 2, though later it will be convenient to allow s = 1.

Claim 10.1. Sd
n,q is also the quotient of

SN,Q := Â2/ 1
2q(n−q)

(
1, 2n′(n− q) + 1

)
, where qq′ = nn′ + 1,

by the involution induced by (x, y) 7→ (ϵqy, x), where ϵ is any primitive 2q(n−q)-th root of unity.
This gives the correspondence

(n, q) 7→
(
N = 2q(n− q), Q = 2n′(n− q) + 1

)
, and

(N,Q) 7→
(
n = q + 1

2 (N,Q− 1), q = N/(N,Q− 1)
)
.

(So N is even and Q2 ≡ 1 mod N .)

To see these, contract the curves C ′
0, C

′′
0 and C2, . . . , Cs to get S̄d

n,q → Sd
n,q. There is a single

exceptional curve ∼= P1 with two A1 points on it, plus the singularity coming from S(c2, . . . , cs).
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Thus S̄d
n,q has a double cover, ramified only at the A1 points. The corresponding double cover

of Sd
n,q is a cyclic quotient singularity, whose dual graph is

cs − · · · − c2 − c̃1 − c2 − · · · − cs (10.2)

where c̃1 = 2(c1 − 1). We claim that this is the quotient singularity SN,Q. To see this, start
with SN,Q and blow up the origin. In the (x, y

x )-chart we get

A2/ 1
2q(n−q)

(
1, 2n′(n− q)

) ∼= A2/ 1
q

(
1, n′).

Next, write q
m := [c2, . . . , cs], so n = c1 − m

q , and note that nn′ ≡ −1 mod q, so mn′ ≡ 1

mod q. Therefore

Â2/ 1
q

(
1, n′) ∼= Â2/ 1

q

(
1,m

)
which gives S(c2, . . . , cs).

The exceptional curve of the blow-up is point-wise fixed by a subgroup of order 2(n − q).
Taking the corresponding quotient we have a smooth surface and the self-intersection of the
curve is −2(n− q). Then we have a 1

q -action, which changes the self-intersection to

−2(n− q)/q = −2(n/q) + 2.

Then we resolve the Â2/ 1
q

(
1,m

)
singularities. The self-intersection becomes

−2⌈n/q⌉+ 2 = −2c1 + 2,

as claimed.
Finally (x, y) 7→ (ϵqy, x) descends to the involution on SN,Q. □

Definition 11. Let X0 be a surface with quotient (more generally log canonical) singulari-
ties only. A KSB deformation of X0 over a reduced, local scheme (0, B) is a flat morphism
g : X → (0, B) such that X0

∼= g−1(0) and KX/B is Q-Cartier. The notion was introduced in
[KSB88], and called qG-deformation there. See Definition 15 for pairs and [Kol23, Sec.6.2] for
nonreduced bases.

12 (KSB smoothings). By [LW86, 5.9] and [KSB88, 3.10], quotient singularities that admit a
KSB smoothing—frequently called T-singularities—are either Du Val or of the form

Â2
uv/

1
rn2 (1, arn− 1), where (a, n) = 1 and n > 1. (12.1)

More generally, these are the singularities that have a KSB deformation with Du Val generic
fiber. (There are a few more cases that have nontrivial KSB deformations, but no KSB smooth-
ings; see [Kol23, 2.29].) By [Wah81], the dual resolution graphs are obtained as follows. We
start with

4 or 3 − 2 − · · · − 2 − 3,

and successively apply the operation

c1 − · · · − cs−1 − cs 7→ 2 − c1 − · · · − cs−1 − (cs + 1),

or its symmetric version.
Starting with (4) gives the Â2

uv/
1
n2 (1, an− 1) singularities, and starting with

(3 − 2 − · · · − 2 − 3)

(with r−2 curves marked 2) gives the Â2
uv/

1
rn2 (1, arn− 1) singularities.

Taking the quotient of (12.1) by the subgroup of order rn shows that

Â2
uv/

1
rn2 (1, arn− 1) ∼= (xy = zrn)/ 1

n (1,−1, a), (12.2)

where x = urn, y = vrn, z = uv. Using the second representation, the semi-universal KSB
deformation is given by (

xy = zrn +
∑r−1

i=0 tiz
in
)
/ 1
n (1,−1, a,0). (12.3)
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Thus the KSB deformation space is smooth and has dimension r.
For r = 1 we get a 1-dimensional KSB deformation space. As observed by [BC94], the r > 1

cases can be reduced to the r = 1 cases as follows. Change the deformation (12.3) to the factored
form (

xy =
∏r

i=1(z
n − si)

)
/ 1
n (1,−1, a,0),

and repeatedly blow up the divisors (x = zn − si = 0) to obtain a small, crepant modification,
which is a flat KSB deformation of its central fiber. The central fiber is a modification of
Â2/ 1

rn2 (1, arn−1) that has r singularities of the form Â2/ 1
n2 (1, an−1), connected by r−1 curves

whose birational transforms are (−1)-curves on the minimal resolution of the central fiber. Using
Notation 13, the dual graph is the following.

1
n2 (1, an−1) − 1 − 1

n2 (1, an−1) − · · · − 1
n2 (1, an−1) − 1 − 1

n2 (1, an−1) (12.4)

This construction leads to the notion of M-modifications in (29).
Note that, as we repeatedly contract (−1)-curves in (12.4), we never contract the curves on

the two ends. These show the following.

Claim 12.5. The minimal resolution of Â2/ 1
rn2 (1, arn−1) and the minimal resolution of (12.4)

are isomorphic along the birational transforms of the x and y axes. □

Notation 13. For n
q = [c1, . . . , cs] we use

a1 − n
q − a2 resp. a1 − n

q

to denote 2 (resp. 1) curves through a singular point of type Â2/ 1
n (1, q), whose resolution dual

graph is

a1 − c1 − · · · − cs − a2 resp. a1 − c1 − · · · − cs.

3. Surface pairs with reduced boundary

Notation 14. Let (S,D) be an lc surface pair, where D is a reduced curve. There are 3 possible
local normal forms at points p ∈ D ⊂ S; see for example [Kol13, Sec.3.3].

(14.1) (Cyclic, plt) (Sn,q, Bn,q) :=
(
Â2

xy, (x = 0)
)
/ 1
n (1, q), where (n, q) = 1. The minimal

resolution dual graph is the following, where n
q = [c1, . . . , cs] and • denotes the birational

transform of Bn,q.

c1 − c2 − · · · − cs − •
(14.2) (Cyclic, non-plt) (Sn,q, Dn,q) :=

(
Â2

xy, (xy = 0)
)
/ 1
n (1, q), where (n, q) = 1. The minimal

resolution dual graph is

• − c1 − c2 − · · · − cs − •,

where • denotes a branch of the birational transform of Dn,q. Note that Sn,n−1 is the Du Val
singularity (uv = wn). These are the only ones for which Dn,q is Cartier; they behave
exceptionally in many respects.

(14.3) (Dihedral) The pair (Sd
n,q, D

d
n,q) has dual graph.

2

2 − c1 − c2 − · · · − cs − •,

where • denotes the birational transform of Dd
n,q. The curve Dd

n,q is irreducible and smooth.

Note that s = 1 iff q = 1. The singularity Sd
n,1
∼= S4n−4,2n−1 is a cyclic quotient, but the

curve Dd
n,1 is different from the curves B4n−4,2n−1 and D4n−4,2n−1.
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As in (10.1), (Sd
n,q, D

d
n,q) is also obtained as the quotient of

(SN,Q, DN,Q) :=
(
Â2, (xy = 0)

)
/ 1
2q(n−q)

(
1, 2n′(n− q) + 1

)
by the involution induced by (x, y) 7→ (ϵqy, x).

Definition 15 (KSBA deformations of pairs). Let (X0,∆0 :=
∑

ciD
i
0) be a normal, log canon-

ical surface pair. Assume that ci > 1
2 for every i. A KSBA deformation of (X0,∆0) over a

reduced base (0, B) is a flat morphism g : X → (0, B), plus flat divisors Di ⊂ X such that
KX/B +

∑
ciD

i is Q-Cartier.

Comment on the definition 15.1. The ‘correct’ definition of KSBA deformations is quite
complicated, see [Kol23, Sec.8.2], since the Di need not be flat if c ≤ 1

2 . It is a nontrivial result

that the general definition is equivalent to the above one if ci >
1
2 and the base is reduced; see

[Kol23, 2.3 and 4.7] for the key steps.
Since we are concerned with the reduced structure of the deformation spaces, the above naive

definition is good enough.

Comment on terminology 15.2. Following [Kol23], I use KSB deformation if ∆ is a Z-divisor.
The usage in the literature is not consistent; this applies to my papers as well.

Definition 16. A flat morphism g : (X,∆)→ (0, B) is a doubly KSBA deformation of (X0,∆0)
if it is a KSBA deformation both for X0 and for (X0,∆0). Equivalently, if KX/B and ∆ are
both Q-Cartier.

Thus doubly KSB deformations of (X0, c∆0) are independent of c ̸= 0.

17 (Existence of deformation spaces). Let Y be an affine variety (or Stein space) with isolated
singularities and p : X → Y a proper, birational morphism such that Ex(p) is proper. Then a
semi-universal deformation space Def(X) exists (and is finite dimensional); see [Gra72, Wah76,
Bin87]. We get Def(Y ) using the identity map Y = Y .

If Z ⊂ X is a closed subvariety with isolated singularities, then Def(X,Z) exists, parametriz-
ing deformations where both X and Z are flat over the base.

If x ∈ X is an isolated singular point of X and Z, then Def(x,X,Z) denotes the deformation
space of a small enough neighborhood of x ∈ U ⊂ X (using the identity map U = U).

Let (X0,∆0) be a normal, log canonical surface pair. All KSB deformations give a functor,
and similarly for doubly KSB deformations. The semi-universal deformation spaces and the
universal families over them are denoted by

UnivKSB(X0,∆0)
u ↓

DefKSB(X0,∆0)
and

UnivdKSB(X0,∆0)
u ↓

DefdKSB(X0,∆0).
(17.1)

Our main aim is to describe the reduced structure of DefKSB(X0,∆0), thus, we can as well work
with the naive version as in Definition 15.

For the purposes of our proofs, the main example of DefdKSB(X0, D0) that we need is the
following.

Lemma 18. The semi-universal doubly KSB deformation space of the cyclic pair(
Â2

uv, (uv = 0)
)
/

1

rn2
(1, ran− 1)

is (
(xy = zrn +

∑r−1
i=0 tiz

in), (z = 0)
)
/ 1
n (1,−1, a,0). (18.1)

Proof. Using index 1 coverings as in [KSB88, 3.10] or [Kol23, 2.23], all such deformations are
quotients of a deformation of

(
(xy − zrn = 0), (z = 0)

)
by the group action 1

n (1,−1, a,0). This
is the boundary singularity Brn in the notation of [AGZV85, I.Sec.17.4].
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The key point is that we can not eliminate the zrn−1 term since we need to keep the divisor
equation as z = 0. The equation must be invariant for 1

n (1,−1, a,0), which gives (18.1). □

Example 19. Since we have an explicit description of all KSB deformations, we can use it to
describe all doubly KSB deformations in most cases. The basic examples are the following.

(19.1) Every KSB smoothing of Sn,q is a doubly KSB deformation of (Sn,q, Dn,q) by Lemma 18.

(19.2) By Theorem 3, (Sn,q, Bn,q) has no doubly KSB deformations.

(19.3) The non-Du Val dihedral singularities have no KSB deformations by Paragraph 12; see
(57) for the Du Val cases.

(19.4) If 5
6 < c ≤ 1 and (S, cD) is lc, then (S,D) is also lc, see [Kol13, 3.44]. Thus the doubly

KSB smoothings are fully described by Lemma 18.

(19.5) Other examples with c = 1
2 are in (58); see also (57).

In order to compute DefKSB(S,D) for the pairs in (14.1–3), [KSB88] or [Kol23, 2.23] give the
following simplifying step if KS +D is not Cartier.

20 (The order of KS +D in the class group). We consider separately the 3 cases in (14.1–3).

(20.1) For (14.1), the group acts faithfully on dx∧dy
x . Thus (Â2

xy, (x = 0)
)
is the index 1 cover

of (Sn,q, Bn,q); see [Kol13, 2.49]. Therefore, as in [Kol23, 2.23], every KSB deformation of

(Sn,q, Bn,q) is induced by a KSB deformation of (Â2
xy, (x = 0)

)
. The latter is rigid, so every

KSB deformation of (Sn,q, Bn,q) is trivial.

(20.2) For (14.2), the rational 2 form dx∧dy
xy is invariant under the group action, hence descends

to a generating section of ωSn,q
(Dn,q). Thus ωSn,q

(Dn,q) is locally free and KS+D is Cartier.
Thus the method of [Kol23, 2.23] does not give any information about the KSB deformations.

(20.3) For (14.3), the rational 2 form dx∧dy
xy is invariant under the cyclic subgroup of order

2q(n− q), but anti-invariant under (x, y) 7→ (ϵqy, x). Thus only its tensor square descends, so
KS+D is 2-torsion in the local Picard group. The corresponding double cover is (SN,Q, DN,Q)
as in (14.3).

As in [Kol23, 2.23], every KSB deformation of (Sd
n,q, D

d
n,q) is induced by a KSB deformation

of (SN,Q, DN,Q). Thus, in principle, this reduces us to the previous case. We give a more
direct description in (31).

Pulling KS +D back to the minimal resolution shows that

(20.4) KSm +Dm +
∑s

i=1 Ci ∼ 0 in case (14.2), and

(20.5) 2
(
KSm +Dm +

∑s
i=1 Ci

)
+ (C ′

0 + C ′′
0 ) ∼ 0 in case (14.3).

4. Q-modifications

P-modifications were introduced in [KSB88] (under the name P-resolution) to describe smooth-
ings of quotient singularities. A variant, called M-modification, is developed in [BC94]. To
handle arbitrary deformations of pairs we introduce Q-modifications. These are actually very
natural objects from the point of view of birational geometry, and many basic results on P- and
M-modifications hold for Q-modifications.

Definition 21. Let (s, S) be a rational surface singularity. A proper, birational morphism
π : SQ → S is a Q-modification if

(21.1) KSQ
is π-nef, and

(21.2) SQ has only quotient singularities. (So ‘Q’ for quotient.)

Both P- and M-modifications are special cases of Q-modifications.
Roughly speaking, studying smoothings of quotient singularities using [KSB88, 3.9] leads to

P-modifications, and the [BC94] refinement leads to M-modifications.
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Studying deformations of log canonical pairs (S,∆) using [KSB88, 3.9] leads to Q-modifications
with KSQ

π-ample, and the [BC94] refinement leads to general Q-modifications.

Notation 22. Let (0, S) be a rational singularity with minimal resolution µ : Sm → S. Let
π : S̄ → S be a proper, birational morphism. Assume that S̄ is normal with minimal resolution
µ̄ : S̄m → S̄. Then S̄m dominates Sm, giving a commutative diagram

S̄m µ̄ //

πm

��

S̄

π

��
Sm

τ

>>

µ // S

(22.1)

We can write

KS̄m ∼Q µ̄∗KS̄ − ∆̄, and KS̄m ∼ (πm)∗KSm + F̄m, (22.2)

where ∆̄ is effective with Supp ∆̄ ⊂ Ex(µ̄), and F̄m is effective with Supp F̄m = Ex(πm).
Let Ām ⊂ S̄m be an irreducible curve that is exceptional over S, with images Am ⊂ Sm and

Ā ⊂ S̄. (We use Am := 0 if the image is a point.) Then (22.2) gives that

(Ā ·KS̄) = (Am ·KSm) +
(
Ām · F̄m

)
+
(
Ām · ∆̄

)
. (22.3)

From this we conclude the following.

(22.4) If Ā ̸= 0 and Am ̸= 0, then (Ā ·KS̄) ≥ 0, with equality holding iff (Am ·KSm) = 0 and τ
is an isomorphism along Am.

(22.5) If Am = 0, then (Ā · KS̄) depends only on the intersection numbers of the curves in
Ex(µ̄) ∪ Ex(πm).

Lemma 23. Using the notation of (22), assume that KS̄ is π-nef. Then −KS̄m is Q-linearly
equivalent to an effective linear combination of curves, that are exceptional for S̄m → S.

Proof. By (22.2)KS̄m ∼Q µ̄∗KS̄−∆̄ where ∆ is effective. SinceKS̄ is π-nef, −KS̄ is Q-linearly
equivalent to an effective linear combination of π-exceptional curves. □

Remark 24. This Lemma is especially strong if S has quotient singularities. Then, by [KSB88,
3.13], there is a unique, maximal π′ : S′ → S such that −KS′ is Q-linearly equivalent to an
effective linear combination of π′-exceptional curves. This gives a procedure to construct all
Q-modifications.

Lemma 25. Let π : S̄ → S be a Q-modification and πm as in (22.1). Then πm is a composite
of a sequence of blow ups

S̄m =: Yr → Yr−1 → · · · → Y1 → Y0 := Sm,

where each Yi+1 → Yi is the blow-up of a singular point of the image of ∆̄ in Yi.

Proof. By (22.2) KS̄m ∼ µ̄∗KS̄ − ∆̄, where ⌊∆̄⌋ = 0 since S̄ has only quotient singularities.
For any j, let ∆̄j denote the push-forward of ∆̄ to Yj . Then KYr + ∆̄r ∼Q µ̄∗KS̄ is nef over

S by assumption, hence so is each KYj
+ ∆̄j . Let now Fi+1 denote the exceptional curve of

Yi+1 → Yi. Then (KYi+1 ·Fi+1) = −1, so (∆̄i+1 ·Fi+1) ≥ 1. Since ⌊∆̄j⌋ = 0, Fi+1 must intersect

at least 2 irreducible components of ∆̄i+1 (different from Fi+1). The images of these in Yi show
that the blow-up center is a singular point of ∆̄i. □

These show that Q-modifications are combinatorial objects that are determined by the dual
graph D(S). In fact, the following much stronger result holds, which generalizes [Ste91a, 7.2].
To state it, consider a graph with vertices V and edges E. For a subset V ′ ⊂ V the induced
subgraph contains all the edges in E that go between vertices in V ′.
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Proposition 26. Let S1, S2 be surfaces with rational singularities and j : D(S1) ↪→ D(S2) an
isomorphism onto an induced subgraph that preserves the labeling of vertices. Then there is a
one-to-one correspondence between

(26.1) Q-modifications τ1 : Sm
1 99K S̄1 of S1, and

(26.2) Q-modifications τ2 : Sm
2 99K S̄2 of S2, such that Ex(τ2) is supported on j(D(S1)).

Under this correspondence, S̄1 and S̄2 have the same singularities.

Proof. Given a Q-modification of S1, we construct a Q-modification of S2 as follows.
By (25), πm

1 : S̄m
1 → Sm

1 is obtained by repeatedly blowing up singular points of the exceptional
divisor. We do the same blow ups to get S̄m

2 → Sm
2 . Then j lifts to an embedding ȷ̄ of the dual

graph of Ex(S̄m
1 → S1) into the dual graph of Ex(S̄m

2 → S2).
Next we get µ̄1 : S̄m

1 → S̄1 by contracting certain curves contained in Ex(S̄m
1 → S1). Using

ȷ̄, we construct µ̄′
2 : S̄m

2 → S̄′
2 by contracting the corresponding curves of Ex(S̄m

2 → S2). By
construction, S̄2 has the same singularities as S̄1.

We need to show that KS̄2
has nonnegative intersection number with every exceptional curve

of S̄2 → S2. For images of curves in Ex(πm
2 ) this follows from (22.5). For images of curves in

Ex(µ2) this follows from (22.4).
Conversely, let τ2 : Sm

2 → S2 ← S̄2 be a Q-modification of S2 as in (26.2). Then (25) shows
that S̄m

2 → Sm
2 is obtained by repeatedly blowing up singular points of j(D(S1)). This shows

that the above procedure can be reversed to get τ1 : Sm
1 → S1 ← S̄1 of S1. □

Definition 27. Let p : X → D be a flat morphism such that X0 has rational singularities. A
simultaneous Q-modification is a proper, birational morphism π : X̄ → X such that

(27.1) πt : X̄t → Xt is a Q-modification for every t ∈ D, and
(27.2) KX̄ is Q-Cartier. Equivalently, p ◦ π : X̄ → D is a KSB deformation.

Being a Q-modification is an open property for KSB deformations. Thus if π0 : X̄0 → X0 is a
Q-modification, then the same holds for nearby t.

The next result, proved in [KSB88, 3.5], says that every flat deformation of a surface with
quotient singularities has a simultaneous Q-modification; see [Kol23, 5.41] for the version that
we use.

Theorem 28. Let p : X → D be a flat morphism such that X0 has quotient singularities. Then
there is a unique simultaneous Q-modification π : X̄ → X such that

(28.1) π is an isomorphism over X \X0, and

(28.2) KX̄ is π-ample.

(28.3) If Xt has Du Val singularities for t ̸= 0, then π0 : X̄0 → X0 is a P-modification (29). □

5. P-modifications

By [KSB88, 3.9], for every quotient singularity S, the irreducible components of Def(S) are
in one-to-one correspondence with the P-modifications of S. We define and study these next.

Definition 29. Let (s, S) be a rational surface singularity. A proper, birational morphism
πP : SP → S is a P-modification if

(29.1) KSP
is πP -ample, and

(29.2) SP has only Du Val and Â2/ 1
rn2 (1, arn−1) singularities, where (a, n) = 1.

Following [BC94], πM : SM → S is an M-modification if

(29.1) KSM
is πM -nef, and

(29.2) SM has only Â2/ 1
n2 (1, na−1) singularities, where n > 1 and (a, n) = 1.
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Given a P-modification SP → S, resolving its Du Val singularities and applying the construction
(12) gives an M-modification πMP : SM → SP such that KSM

∼Q π∗
MPKSP

. By [BC94] this
establishes a one-to-one correspondence between P- and M-modifications of S.

Note on terminology. For P-modifications we follow [KSB88, 3.8]. A more general version is
defined in [Kol91, 6.2.13], which allows more singularities on SP .

For P-modifications we get the following variant of (26).

Corollary 30. Using the notation and assumptions of (26), there is a one-to-one correspondence
between

(30.1) P-modifications τ1 : Sm
1 99K S̄1 of S1, and

(30.2) P-modifications τ2 : Sm
2 99K S̄2 of S2, such that Ex(τ2) is supported on

j(D(S1)) ∪ {(−2) curves disjoint from j(D(S1))}.

Proof. The only difference is that, as we go from S̄1 to S̄2, we have to ensure that KS̄2
is

ample. That is, we have to contract each connected component of all (−2)-curves disjoint from
j(D(S1)) to a Du Val singularity. □

31 (P-modifications of dihedral quotients). By [Ste91a, Ste93] P-modifications

τD : Sm
D → SD ← S̄D

of SD := S(22, c) are obtained from P-modifications τC : Sm
C → SC ← S̄C of SC := S(2, c) as

follows.

(31.1) (C1 is not contracted by τC .) Then C ′
0, C

′′
0 are contracted to A1 points by τD.

(31.2) (C ′
0, C1, . . . , Ci are contracted by τC to an Ai+1 point.) Then C ′′

0 is also contracted by
τD, giving a Di+2 point.

(31.3) (C1, . . . , Ci are contracted by τC to a non-DV point.) Then C ′
0, C

′′
0 are not contracted

by τD.

(31.4) (C ′
0, C1, . . . , Ci are contracted by τC to a non-DV point.) Then C ′′

0 is not contracted by
τD. There is also a symmetric version, where C ′′

0 , C1, . . . , Ci are contracted by τD but C ′
0 is

not contracted.

The P-modifications that appear in Theorem 2 have several characterizations.

Proposition 32. Let πP : SP → S be a P-modification of a dihedral quotient singularity
(Sd

n,q, D
d
n,q) with reduced exceptional curve EP . The following are equivalent.

(32.1) SP is one of the cases (31.1–2).

(32.2) C ′
0, C

′′
0 are contracted to Du Val point(s) on SP .

(32.3) (SP , DP + EP ) is log canonical.

(32.4) KSP
+DP + EP is numerically πP -trivial.

Proof. The equivalence of (1) and (2) is clear. To see (3) note that if C1, . . . , Ci are contracted
by τC to a non-DV point, then there are 3 curves in DP + EP through this point, and if
C ′

0, C1, . . . , Ci are contracted by τ1 to a non-DV point, then C ′′
0 meets the resolution at C1,

which is not an end curve of the chain for i ≥ 2. For i = 1 it is an end curve, but then another
curve of DP + EP meets C1.

For (4), note that KSm +
∑

i>0Ci +
1
2 (C

′
0 + C ′′

0 ) is numerically trivial on Sm → S. Thus

KSP
+ DP + EP − 1

2 (C
′
0 + C ′′

0 ) is numerically πP -trivial. Thus (4) holds iff both C ′
0, C

′′
0 are

contracted. This happens only in cases (31.1–2). □

Remark 33. Note that the cases (32) are in bijection with P-modifications of T := S(c2, . . . , cs).
Indeed, let τT : Tm → T ← TP be a P-modification.

If c1 > 2 then we get τD by not contracting C1 but contracting C ′
0, C

′′
0 .
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If c1 = 2 and C2 is contracted to a non-DV point by τT , then again we contract C ′
0, C

′′
0 but not

C1. If C2, . . . , Ci are contracted to an Ai−1 point by τT , then C ′
0, C

′′
0 , C1, . . . , Ci are contracted

to a Di+2 point by τD. Finally if C2 is not contracted, then C ′
0, C

′′
0 , C1 are contracted to an A3

point by τD.

The main reason to study P- and M-modifications is the following, essentially proved in
[KSB88, 3.9] and [BC94].

Theorem 34. Let (0, S) be a rational surface singularity, πP : SP → S a P-modification, and
πMP : SM → SP the corresponding M-modification. Then, using the notation of (17.1), there is
a commutative diagram

UnivKSB(SM )
cMP−→ UnivKSB(SP )

cP−→ Univ(S)

uM ↓ uP ↓ uS ↓
DefKSB(SM )

τMP−→ DefKSB(SP )
τP−→ Def(S)

(34.1)

where

(34.2) DefKSB(SM ) and DefKSB(SP ) are smooth of the same dimension,

(34.3) τMP : DefKSB(SM )→ DefKSB(SP ) is finite and Galois,

(34.4) τP : DefKSB(SP ) → Def(S) is a finite, birational morphism onto an irreducible compo-
nent of Def(S).

Sketch of proof. The existence of the diagram follows from (35).
Since KSB deformations are locally unobstructed, the obstruction to smoothness lies in H2

of the tangent sheaf. If X → U is proper of fiber dimension ≤ 1, and U is affine, then Hi of any
coherent sheaf on X vanishes for i ≥ 2. This implies smoothness in (34.2); see (47) for details.

The relation between P- and M-modifications is established in [BC94]. The Galois group in
(34.3) is a product of reflection groups, determined by the singularities of SP ; see [BC94].

In order to show (34.4), note first that every fiber of uP is a P-modification of the correspond-
ing deformation of S. We check in (59) that P-modifications πP : SP → S do not have nontrivial
1-parameter deformations fixing S. This shows that τP is finite. As in [Art74], τP is onto an
irreducible component of Def(S) by openness of versality. Thus τP : DefKSB(SP ) → Def (S)
is a finite cover. In order to show that it has degree 1, let T → Def (S) be a morphism from
the spectrum of a DVR that maps the closed (resp. generic) point the closed (resp. generic)
point. By what we already proved, there is a finite T ′ → T such that the pull-back of Univ(S)
to T ′ → T → Def (S) is obtained from a KSB deformation of SP . We may assume that T ′/T
is Galois. As noted in [KSB88, p.312], the action of Gal(T ′/T ) lifts to an action on this KSB
deformation. Taking the quotient shows that the pull-back of Univ(S) to T → Def (S) is ob-
tained from a KSB deformation of SP . Thus T → Def (S) lifts to T → DefKSB(S), so τP is
birational. □

Remark 34.5. By [Ste91a], τP is an isomorphism onto an irreducible component of Def(S) for
cyclic quotients, but there are dihedral examples where τP is not an isomorphism. Also, τP is
birational but not necessarily finite for the more general P-modifications considered in [Kol91,
Sec.6].

The proof of the following is summarized in [KM92, 11.4], which in turn relies mainly on
[Wah76].

Lemma 35. Let pX : X → S be a flat morphism of complex analytic spaces. Fix s ∈ S and let
πs : Xs → Ys be a proper morphism such that (πs)∗OXs

= OYs
, R1(πs)∗OXs

= 0 and Ex(πs) is
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proper. Then, after shrinking s ∈ S, there is a unique commutative diagram

X
π−→ Y

pX ↓ ↓ pY
S = S,

where pY : Y → S is flat, and π|Xs
= πs. □

Next we show that KSB deformations of a pair can be understood in terms of doubly KSB
deformations of P-modifications. This is very similar to [KSB88, 3.9].

Theorem 36. Let (S,D) be an lc pair such that SingS ⊂ SuppD. There is a bijection between
the following sets.

(36.1) Irreducible components of DefKSB(S,D) (as in Definition 15).

(36.2) P-modifications πP : SP → S such that

(36.2.a) KSP
+DP + EP ∼Q 0, and

(36.2.b) the singularities of
(
SP , DP +EP

)
have doubly KSB deformations with Du Val generic

fibers.

Proof. Assume that πP : SP → S satisfies (36.2). We note in (47) that there is a semi-
universal doubly KSB deformation

uSP
:
(
SP ,DP

)
→ DefdKSB

(
SP , DP + EP

)
.

(The deformation of DP + EP is an irreducible divisor, which we denote by DP .) As in (34),
the contraction πP extends to

uSP
:
(
SP ,DP

) π−→
(
S,D)

uS−→ DefdKSB

(
SP , DP + EP

)
,

where uS is a flat deformation of S. Since R1π∗OSP
= 0 and KSP

+ DP is Q-linearly trivial,
its push-forward KS + D is Q-Cartier by [KM92, 12.1.4]. Thus uS is a KSBA deformation of
(S,D).

As we noted, DP is irreducible, and −DP is numerically equivalent to the relative canonical
class, hence π-ample. Thus π is an isomorphism on the generic fiber. So, by openness of versality
[Art74], DefdKSB

(
SP , DP+EP

)
maps onto a whole irreducible component of DefKSB(S,D). Thus

(36.2) ⇒ (36.1). (Note that this implication holds without any restriction on c.)
Conversely, take a general 1-parameter KSB deformation p : (S,D) → D of (S,D). We

check in Proposition 48 that the generic fiber has only Du Val singularities. Let π̄ : S̄ → S
be the simultaneous P-modification as in (28.3), with central fiber πP : SP → S. Then πP is
a isomorphism over the generic fiber, hence the generic fiber of S̄ → D also has only Du Val
singularities.

Let D̄ be the birational transform of D. Since π is small, KS̄ + D̄ ∼Q π̄∗(KS + D
)
, and

(S̄, D̄+ SP ) is also lc. By adjunction as in [Kol13, 4.9], we get that the pair
(
SP , D̄|SP

)
is also

lc.
Since KSP

is πP -ample, −D̄|SP
is also π0-ample, hence its support must contain the hole

exceptional divisor. Each divisor in D̄|SP
appears with integral coefficient. Therefore D̄|SP

is
the sum of DP (the birational transform of D) plus the πP -exceptional divisor EP , so

KSP
+ (DP + EP ) =

(
KS̄ + D̄

)
|SP
∼Q π∗(KS +D

)
∼Q 0. (36.4)

Thus (36.1) ⇒ (36.2). □

6. Tangent sheaves

In order to compute the dimensions of the deformation spaces, we need various results on
tangent and logarithmic tangent sheaves for modifications of rational singularities. These are
mostly taken from [Lau73a, Lau73b] and [LP07, KLP12]. Note that [LP07, KLP12] focus on
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the global aspects, which tend to be more subtle. See also [PPS23, RU22, DRU22] for similar
computations.

37 (Tangent and logarithmic tangent sheaves). Let S be a smooth surface and D ⊂ S a smooth
curve with normal bundle ND. There is a natural map TS → ND. Its kernel is the logarithmic
tangent bundle of the pair (S,D), denoted by TS(− logD). Thus we have an exact sequence

0→ TS(− logD)→ TS → ND → 0. (37.1)

The restriction of TS(− logD) to D sits in an exact sequence

0→ OD → TS(− logD)|D → TD → 0. (37.2)

Locally, if D = (y = 0), then the kernel OD is generated by y ∂
∂y and the quotient TD by ∂

∂x .

Next assume that S is smooth but D ⊂ S is a nodal curve with normalization τ : D̄ → D.
The immersed normal sheaf of D is

ND̄ := τ∗ coker
[
TD̄ → τ∗TS

]
. (37.3)

Then (37.1) becomes
0→ TS(− logD)→ TS → ND̄ → 0,

where TS(− logD) is locally free. More generally, if D = D1 +D2, then we have

0→ TS(− log(D1 +D2))→ TS(− logD1)→ ND̄2
→ 0. (37.4)

The sequence (37.2) now gives

0→ OD̄ → τ∗TS(− logD)→ TD̄(−N)→ 0, (37.5)

where N ⊂ D̄ is the preimage of the nodes of D.
If S is a normal surface and D ⊂ S a reduced curve, then there is a finite subset P ⊂ S such

that (S \ P,D \ P ) is a smooth pair. Let j : S \ P ↪→ S be the natural injection. The tangent
sheaf of S and the logarithmic tangent sheaf of (S,D) are defined as

TS := j∗TS\P , and TS(− logD) := j∗
(
TS\P (− log(D \ P ))

)
. (37.6)

In the log canonical case, we have the following close analog of (37.4).

Lemma 38. Let (S,D1 +D2) be a log canonical pair, µ : Sm → S the minimal resolution, and
Dm

i := µ−1
∗ Di with normalizations τi : D̄

m
i → Dm

i . Then there is an exact sequence

0→ TS(− log(D1 +D2))→ TS(− log(D1))→ µ∗ND̄m
2
→ 0. (38.1)

Proof. Over the smooth locus of S, this is (37.4). Thus it remains to check what happens at
the singular points that are contained in D1+D2. For this we can use local analytic coordinates.

If a finite group G acts with isolated fixed points on a surface X, then the local sections of
TX/G are the G-invariant local sections of TX . Thus the tangent sheaf of Sn,q = Â2

xy/
1
n (1, q) is

generated by

x ∂
∂x , y

q′ ∂
∂x , y

∂
∂y , x

q ∂
∂y . (38.2)

If Bx ⊂ Sn,q is the image of the x-axis, then we see that TS(− logBx) is generated by

x ∂
∂x , y

q′ ∂
∂x , y

∂
∂y , and the quotient TS/TS(− logBx) is generated by xq ∂

∂y .

For the minimal resolution of Sn,q we use the chart given in (9.2). The chain rule gives that

(π1)∗
(

∂
∂y2

)
= xq ∂

∂y .

That is, TS/TS(− logBx) is naturally isomorphic to the normal bundle of Bm
x ⊂ Sm

n,q. This
shows (38.1) at the cyclic quotient points.

At a dihedral point (Sd
n,q, B

d
n,q), the minimal resolution can be obtained by first taking a double

cover (SN,Q, DN,Q) → (Sd
n,q, B

d
n,q), resolving SN,Q and then quotienting out by the involution.

The latter is fixed point free along the birational transform of DN,Q, so the normal bundle
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computation for the birational transform of Bd
n,q is the same as for the birational transform

of DN,Q. Finally note that Q2 ≡ 1 mod N , so the quotient TS/TS(− logBx) is generated by

xQ ∂
∂y +yQ ∂

∂x , where x, y are the orbifold coordinates on SN,Q. This shows (38.1) at the dihedral

quotient points. □

Proposition 39. Let (X,D) be a log canonical pair with quotient singularities. Let π : Xm → X
be either the minimal resolution, or the blow-up of a node of D where X is smooth. Let Em be
the exceptional curve and Dm the birational transform of D. Then

(39.1) π∗TXm

(
− log(Em +Dm)

)
= TX(− logD),

(39.2) R1π∗TXm

(
− log(Em +Dm)

)
= R1π∗TXm

(
− log(Em)

)
= 0, and

(39.3) Hi
(
X,TX(− logD)

)
= Hi

(
Xm, TXm

(
− log(Em +Dm)

))
for every i.

Proof. For (39.1) the blow-up of a node of D is a simple computation. At a singular point
of X, it suffices to show the D = ∅ case. That is, all local generators of TX lift to sections of
TXm

(
− logEm

)
. This is done in [BW74, 1.2].

The D = ∅ case of (39.2) is discussed in (41.1). For general D, we use (37.4) to get

0→ TXm

(
− log(Em +Dm)

)
→ TXm

(
− log(Em)

)
→ NDm → 0.

Pushing this forward, we get that

R1π∗TXm

(
− log(Em +Dm)

) ∼= coker
[
TS → π∗ND̄m

]
,

and the latter is 0 by (38). The Leray spectral sequence now gives (39.3). □

Remark 39.4. Let π : X ′ → X be the blow-up of a smooth point with exceptional curve E.
Then h1(X ′, TX′(− logE)) = h1(X,TX) + 2. Deformations of X ′ are obtained by deforming X
and also the point.

Complement 39.5. The computations also show that if all the singularities are (Sn,q, Dn,q),
then TX(− logD) is locally free and π∗TX(− logD) ∼= TXm

(
− log(Em +Dm)

)
.

We can now compute the global contribution to the dimension of our deformation spaces.

Proposition 40. Let S be an affine surface with rational singularities and D ⊂ S a reduced
curve. Let µ : Sm → S be the minimal resolution with reduced exceptional set Em, and π : S̄ → S
a Q-modification with reduced exceptional set Ē. Let Dm resp. D̄ denote the birational transforms
of D on Sm resp. S̄. Assume that (S̄, Ē + D̄) is lc and (Sm, Em +Dm) is normal crossing.

For an irreducible component Ēi ⊂ Ē, let ei ∈ N be the negative of the self-intersection of its
birational transform on the minimal resolution of S̄. Then

(40.1) h1
(
S̄, TS̄(− log D̄)

)
= h1

(
S̄, TS̄(− log(Ē + D̄))

)
+
∑

i∈I(ei − 1), and

(40.2) h1
(
S̄, TS̄(− log(Ē + D̄))

)
= h1

(
Sm, TSm(− log(Em +Dm))

)
.

Proof. (38) gives an exact sequence

0→ TS̄

(
− log(Ē + D̄)

)
→ TS̄(− log D̄)→ ⊕OĒi

(−ei)→ 0.

Here h0
(
Ēi,OĒi

(−ei)
)
= 0 since ei > 0, so taking cohomologies gives the first claim. For the

second, we use the notation of (22), and claim that

h1
(
S̄m, TS̄m(− log(F̄m + D̄m))

)
equals both terms in (40.2), where F̄m is the reduced exceptional set of S̄m → S. For S̄m → S̄ we
use the minimal resolution case of (39). Next, since S̄m → Sm is a composite of node blow-ups
by (25), we can repeatedly use the node blow-up case of (39). □
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7. Dimension formulas

We compute the dimension of the irreducible components of various deformation spaces using
invariants of the singularity and its P-modifications. The formulas are simplest when S is
determined by D(S).

41. Let (s, S) be a rational surface singularity with minimal resolution µ : Sm → S and reduced
exceptional curve Cm = ∪i∈ICi.

By [Ser06, Sec.3.4.4], H1
(
Sm, TSm(− logCm)

)
is the tangent space to those deformations of

Sm where every Ci lifts. Equivalently, these are those deformations of S that preserve the dual
graph. The dimension of this tangent space is usually hard to compute, but it is known in several
important cases.

Quotient singularities 41.1. The dual graph determines the singularity, hence

H1
(
Sm, TSm(− logCm)

)
= 0.

This has been long known; see for example [Bri68], [BPV84, III.5.1] or [Kol13, 3.32].

Taut singularities 41.2. These are the singularities that are determined by their dual graphs.
For these H1

(
Sm, TSm(− logCm)

)
= 0. A rather laborious result of [Lau73a, Lau73b] says that

this vanishing implies tautness, with a few exceptions; these are enumerated in [Lau73b, 3.2].
The complete list of taut singularities is given in [Lau73b].

A simple case is when D(S) has only 1 fork, which has degree 3 and self-intersection ≤ −3.
This is used for the W (p, q, r) singularities studied in [PS22].

Weighted homogeneous singularities 41.3. For these D(S) has only 1 fork. Let d0 denote its
degree and −c0 its self-intersection. By [Lau73b, 4.1.III], if c0 ≥ 2d0 − 3 then

H1
(
Sm, TSm(− logCm)

)
= d0 − 3.

These are used in [JS23] under the (mostly) weaker assumption c0 ≥ d0 + 3.

For P-modifications, we need only the simplest numerical invariants.

Definition 42. Let π : SP → S be a P-modification of a normal singularity. Let

{pj ∈ SP : j ∈ JP } resp. {Ei ⊂ SP : i ∈ IP }
denote the singular points of SP , respectively the irreducible, exceptional curves of π : SP → S.
Set rj = r if pj is of type Ar, Dr, Er or Â2/ 1

rn2 (1, arn−1) for some n > 1. Note that
rj = dimDefKSB(pj , SP ) by (12.2).

Let ei ∈ N denote the negative of the self-intersection of the birational transform of Ei on the
minimal resolution of SP .

We can now state the first dimension formula.

Proposition 43. Let π : SP → S be a P-modification of an affine surface with rational singu-
larities, and IP , JP as in (42). Let Sm → S be the minimal resolution, with reduced exceptional
curve Cm. Then

dimDefKSB(SP ) =
∑

j∈JP
rj +

∑
i∈IP

(ei − 1) + h1
(
Sm, TSm(− logCm)

)
. (43.1)

In particular, if S has taut singularities, then

dimDefKSB(SP ) =
∑

j∈JP
rj +

∑
i∈IP

(ei − 1). (43.2)

Proof. First note that, by (47),

dimDefKSB(SP ) =
∑

j∈JP
dimDefKSB(pj , SP ) + h1(SP , TSP

).

Here rj = dimDefKSB(pj , SP ) by (12.2), this explains the summand
∑

j∈JP
rj . The computation

of h1(SP , TSP
) is the D = 0 special case of (40). □
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For KSB deformations of pairs we have the following. The dihedral case is discussed in (46).

Theorem 44. Let π : (SP , DP + EP ) → (S,D) := (Sn,q, Dn.q) be a P-modification of a cyclic
quotient singularity and JP as in (42). Then

dimDefdKSB(SP , DP + EP ) =
∑

j∈JP
rj + |type A points|. (44.1)

Clarification 44.2. Here |type A points| is the number of points where the pair (SP , DP +EP )
is locally of the form

(
(xy = zr+1), (xy = 0)

)
for some r ≥ 0. For r = 0 the surface is smooth

but the curve is singular.

Proof. If pj is a singular point of SP or of DP + EP , then dimDefdKSB(pj , SP , DP + EP ) is

(44.3) r for a singularity is of type Â2/ 1
rn2 (1, arn−1) by Lemma 18, but

(44.4) r + 1 if the singularity is of type Ar.

(Here we need to count
(
Â2, (xy = 0)

)
as type A0.) Thus the right hand side of (44.1) is the

sum of the local terms in (47).
It remains to show that the global term h1

(
SP , TSP

(− log(DP +EP ))
)
vanishes. This follows

from (40.2), (39.2) and (41.1.). □

Remark 45. Comparing (43) and (44) we see that

dimDefdKSB(SP , DP + EP ) ≤ dimDefKSB(SP ),

and the inequality is strict with a few exceptions. These are triple points and also P-resolutions
of the form

•− An1
− 2 − 1

rn2 (1, arn−1) − 2 − An2
−•

The dihedral version of (44) is the following.

Theorem 46. Let π : (SP , DP +EP )→ (S,D) = (Sd
n,q, D

d
n.q) be a P-modification of a dihedral

quotient singularity that satisfies the conditions of (32), and JP as in (42). Then

dimDefdKSB(SP , DP + EP ) =
∑

j∈JP
rj + |type A points| − 2. (46.1)

Proof. Note that here (SP , DP + EP ) has a singular point of type(
(z2 = x(y2 − xr−2)), (x = z = 0)

)
whose KSB deformation space has dimension r−2 by (57). (We have 2 singular points if r = 2.)
This is why we need to subtract 2 on the right hand side of (46.1). The rest of the argument is
as for (44). □

We used the following result, whose proof is summarized in [KM92, 11.4].

Lemma 47. Let S be an affine surface, τ : X → S a proper, birational morphism and D ⊂ X
a reduced curve. Assume that X is normal and let {pj : j ∈ J} be the points of SingX ∪ SingD.
Then the restriction maps

(47.1) Def(X,D)→ ×j∈J Def(pj , X,D),

(47.2) DefKSB(X,D)→ ×j∈J DefKSB(pj , X,D), and

(47.3) DefdKSB(X,D)→ ×j∈J DefdKSB(pj , X,D)

are smooth of relative dimension h1
(
X,TX(− logD)

)
. □

By (20.1), the pairs (Sn,q, Bn,q) are KSB rigid. By contrast, we show that the pairs (Sn,q, Dn,q)
are KSB smoothable, and the pairs (Sd

n,q, D
d
n,q) have KSB deformations whose general fibers

have only singularities of type (S2,1, D2,1) ∼=
(
(xy = z2), (x = z = 0)

)
; we call these almost

smoothings. More precisely, we have the following.

Proposition 48. Every irreducible component of DefKSB(Sn,q, Dn,q) contains smoothings, and
every irreducible component of DefKSB(S

d
n,q, D

d
n,q) contains almost smoothings.
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Proof. By (20.2–3), KS + D (resp. 2(KS + D)) is Cartier, so the same holds for its KSB
deformations, hence every singularity of a KSB deformation of our cyclic (resp. dihedral) pair
is again cyclic (resp. dihedral or cyclic). By openness of versality [Art74], it is thus enough to
show that each cyclic (resp. dihedral) pair is smoothable (resp. almost smoothable).

We find such deformations in the Artin component. For a cyclic pair (S,D), look at the
minimal resolution

π0 : (Sm, Dm + Em)→ (S,D).

By (47), there is a deformation p : (Sm,Dm) → D whose special fiber is (Sm, Dm + Em) and
whose generic fiber is a smooth pair with Dm

gen irreducible. Next π0 extends to a contraction

π : (Sm,Dm)→ (S,D)→ D,

and (S,D)→ D is a KSB smoothing since KSm +Dm + Em ∼ 0 by (20.4).
For a dihedral pair (S,D), we start with π0 : (S′, D′ + E′) → (S,D) which is obtained from

the minimal resolution by contracting the curves C ′
0, C

′′
0 (as in Notation 10). The key point is

that 2
(
KS′ +D′ + E′) ∼ 0 by (20.5). The above argument now works for this case too, except

that we have 2 singularities of type
(
(xy = z2), (x = z = 0)

)
. These are KSB rigid, so persist in

every deformation. □

8. Fractional coefficients

We consider which of the previous results generalize to pairs (S,D =
∑

ciDi).

49 (Applying the method of [KSB88, 3.9]). Let (S,∆ =
∑

ciDi) be a 2-dimensional lc pair, and
p : (S,∆) → D a 1-parameter KSBA deformation of it. Possibly after a base change, [Kol23,
5.41] gives a small modification π : (S′,∆′)→ (S,∆), such that KS′ and ∆′ are Q-Cartier, with
central fiber

π0 :
(
S′,∆′ + E′ := ∆′|S′

)
→ (S,∆)

satisfying the following.

(49.1) π0 : S′ → S is a Q-modification,

(49.2) KS′ is π0-ample,

(49.3) ∆′ is the birational transform of ∆ and E′ is π0-exceptional,

(49.4) KS′ +∆′ + E′ ∼Q 0, and

(49.5) the coefficients in E′ are N-linear combinations of the ci.

Given (S,∆), we can now proceed in several steps.
Step 1. Find all Q-modifications π0 : S′ → S such that KS′ is π0-ample.
Step 2. The Hodge index theorem shows that E′ is uniquely determined by condition (49.4).

Thus we get π0 : (S′,∆′ + E′)→ (S,∆).
Step 3. In many cases condition (49.5) is not satisfied by E′. Then this π0 : S′ → S is

excluded. For some pairs (S,∆) this always holds, and then there are no KSBA deformations.
Step 4. Unfortunately, a given π0 : S′ → S that satisfies conditions (49.1–5) need not

correspond to an irreducible component of DefKSBA(S,∆). The main difficulty is with irreducible
components where a general surface has non-DV singularities. So in practice the hope is to get
a short list of the possible π0 : S′ → S, and then examine each one using other considerations.

Thus Steps 1–3 lead to the following.

Task 50. Let (S,∆ =
∑

i ciDi) be an lc pair. Find all Q-modifications π : S′ → S with reduced
exceptional curve E′ =

∑
j E

′
j and ej ∈ [0, 1] such that

(50.1) KS′ +
∑

i ciD
′
i +
∑

j ejE
′
j ∼Q 0, and

(50.2) the ej are N-linear combinations of the ci.
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For any given pair (S,∆), this is an effectively doable linear algebra problem, but there are likely
many cases if the ci are small. However, if ∆ = cD and c > 1

2 , then we must have ej = c for
every j, hence we get the conditions(

(KS′ + cD′ + cE′) · E′
j

)
= 0 for every j. (50.3)

We can always solve for c if there is a single exceptional curve, but we expect no solutions if
there are several.

We start by writing down solutions of (50.1), and then use these to prove that (50.3) has very
few solutions.

51 (Discrepancy divisors). There are some easy solutions of (50.1).

(51.1) (Sn,q, Dn,q). Let π : S′ → Sn,q be a Q-modification with reduced exceptional divisor
E′. Then KS′ +D′ + E′ ∼Q 0. Indeed, this holds for the minimal resolution by (20.4), and
continues to hold since we blow up only nodes.

(51.2) (Sd
n,q, D

d
n,q). On the minimal resolution Sm → S := Sd

n,q, we have

KSm +Dm
n,q +

1
2 (C

′
0 + C ′′

0 ) +
∑s

i=1Ci ∼Q 0

by (20.5). As we blow up nodes, new curves appear with half integer coefficients that are ≤ 1.

(51.3) (Sn,q, Bn,q). The formula is quite complicated already for the minimal resolution, see
[Kol13, 3.32–34]. We will not use these. Instead, we will choose a divisor B̄n,q so that
Bn,q + B̄n,q = Dn,q and work with (51.1) instead.

The solution of (50) is especially simple for the pairs (Sn,q, cDn,q).

Lemma 52. Let π : S′ → S := Sn,q be a Q-modification with reduced exceptional curve E′ such
that KS′ is π-ample. Then

(52.1) KS′ +D′
n,q + E′ ∼Q 0, and

(52.2) if KS′ + c(D′ + E′) ∼Q 0 for some c < 1, then π is an isomorphism.

Proof. The first claim was already noted in (51.1). If π has r ≥ 1 exceptional curves, then
the dual graph of (S′, D′ + E′) is

• − n0

q0
− e′1 − n1

q1
− · · ·− ns−1

qs−1
− e′s − ns

qs
− •

Since KS′ +D′+E′ ∼Q 0 and KS′ + c(D′+E′) ∼Q 0, we get that D′+E′ ∼Q 0 for c < 1. Then
(D′ + E′) · E′

1 = 0 and KS′ · E′
1 = 0, a contradiction. □

Combining with Lemma 18, we get the following.

Corollary 53. A pair (SN,Q, cDN,Q) is KSBA smoothable iff SN,Q is KSB smoothable, hence
N = rn2, Q = arn− 1. If these hold then the semi-universal KSBA deformation is given by(

(xy = zrn +
∑r−1

i=0 tiz
in), c(z = 0)

)
/ 1
n (1,−1, a,0). □

For the dihedral pairs we have the following.

Lemma 54. Let π : S′ → S := Sd
n,q be a Q-modification such that KS′ is π-ample. Assume that

KS′ + c(D′ + E′) ∼Q 0 for some 1
2 < c < 1. Then π is an isomorphism.

Therefore the non-DV pairs (Sd
n,q, cD

d
n,q) have no KSBA deformations with Du Val general

fibers for 1
2 < c < 1.

Proof. By (51.2) there are half integers e′i ≤ 1 such that KS′+D′+
∑

i e
′
iE

′
i ∼Q 0. Subtracting

gives that
(1− c)D′ +

∑
(e′i − c)E′

i ∼Q 0.

Since D′ is π-nef, −
∑

(e′i − c)E′
i is π-nef, hence e′i − c ≥ 0 for every i. Thus in fact e′i = 1 for

every i. The rest is now the same as in (52), but Sd
n,q itself has no KSB smoothings. □
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By contrast, the pairs (Sn,q, cBn,q) have a much more complicated behavior.

Lemma 55. Let π : S′ → S := Sn,q be a Q-modification such that KS′ is π-ample. Assume that
KS′ + c(B′ + E′) ∼Q 0 for some c < 1. Then π has at most 1 exceptional curve.

Proof. If there are at least 2 exceptional curves, then the dual graph is

• − n0

q0
− e′1 − n1

q1
−e′2 − · · ·

By (51.3) KS′ + B′ + E′ + B̄′ ∼Q 0. Subtracting, we get that (1 − c)(B′ + E′) + B̄′ ∼Q 0.
Here B̄′ is disjoint from E′

1, so (B′ + E′) · E′
1 = 0. This in turn gives that KS′ · E′

1 = 0, a
contradiction. □

Examples 56. Note that S′ with dual graph

• − n0

q0
− e′1 − n1

q1

has a nontrivial KSB deformation if Sn0,q0 is a T-singularity, and it has a KSB deformation with
Du Val general fiber if, in addition, Sn1,q1 is a Du Val singularity. The simplest case is the dual
graph

• − 4
1 − m.

This shows that
(
Â2

xy,
2m−3
2m−1 (y = 0)

)
/ 1
4m−1 (1,m) is KSBA smoothable.

I found only 2 series of pairs with KSBA deformations for different values of c. The first is

• − 4 − 3 − An+2 with P-modifications

• − 4
1 − 3 − An+2 and • − 18

5 − 2 − An .

We get c = 3n+9
3n+11 and c = n+1

n+4 .

The second is • − 2 − 5 − 3 − An+1 with P-modifications

• − 9
5 − 3 − An+1 and • − 25

14 − 2 − An .

We get c = 5n+10
5n+13 and c = 3n+3

3n+8 .

Example 57. Doubly KSB deformations of Dn singularities are described as follows. For r ≥ 2
the Dr-type pair

(
(z2 = x(y2 − xr−2)), (x = z = 0)

)
has an (r−2)-parameter deformation

z2 = x
(
y2 − xr−2 −

∑r−3
i=0 tix

i
)
.

(For r = 2 we mean (z2 = x(y2−1)), which has 2 singular points of type
(
(z2 = xy), (x = z = 0)

)
at (0,±1, 0).)

The divisor D := (x = z = 0) is Q-Cartier, since 2D = (x = 0). So these are doubly KSB
deformations. The generic deformation has 2 singular points of type

(
(z2 = xy), (x = z = 0)

)
at

(0,±
√
−t0, 0). By (20.1) the latter has no KSB smoothings.

Example 58. There are a several KSBA smoothable examples with c = 1
2 . These are given by

the dual graph, where ∗ can be either • or 2
∗

∗ − 4 − ∗

∗

where Dm +∆m is

1
2

1
2 − 1 − 1

2

1
2

Contracting the curve (4) we get doubly KSBA smoothable examples.
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9. Deformations of modifications

We prove that Q-modifications X → S have no (small or large) KSB deformations over
reduced bases that keep S fixed. (See (61) for other deformations and non-reduced bases.) More
generally, we have the following.

Theorem 59. Let S be a normal surface, B a smooth, irreducible curve, and g : Y → S ×B a
proper birational morphism, Y normal. Assume that

(59.1) gb : Yb → S is birational for every b ∈ B, and

(59.2) there is a dense, open subset B◦ ⊂ B such that, for every b ∈ B◦, Yb → S is a Q-
modification.

Then, Y → B is trivial. That is, for any b ∈ B,(
Y → S ×B → B

) ∼= (Yb ×B → S ×B → B
)
. (59.3)

Proof. Over a dense, open subset B∗ ⊂ B◦, the minimal resolutions {Y m
b → Yb : b ∈ B∗}

form a flat family. By (25), we have only finitely many choices for the centers of the blow-ups
giving Y m

b → Sm, so the {Y m
b : b ∈ B∗}, and hence also {Yb : b ∈ B∗}, form locally trivial

families.
Thus the family is also trivial over B by (60). □

Lemma 60. Let g : Y → X × B be a projective morphism such that Y is normal and
gb : red(Yb) → Xb is birational for every b. Assume that there is a dense, open B◦ ⊂ B such
that (Y ◦ → B◦) ∼= ((Y ′ ×B◦)→ B◦) for some normal Y ′. Then (Y → B) ∼= ((Y ′ ×B)→ B).

Proof. Let H be relatively ample on Y → X × B and let H ′ be its birational transform on
(Y ′ × B) → B. H ′ is Cartier over B◦, so Cartier by [Ram63, Sam62]; see also [Kol23, 4.21].
Thus H ′ is relatively ample on (Y ′ × B) → B. Thus (Y → B) ∼= ((Y ′ × B) → B) by [MM64];
see [Kol23, 11.39] for the form that we use. □

Example 61. M-modifications have nontrivial deformations, as the next examples show.
(61.1) Let SP → S be any M-modification whose construction involves blowing up a point

p ∈ Sm. We can move the point p along the exceptional curve and contract in the family to get a
nontrivial flat deformation of SP → S (keeping S fixed). Here the canonical class of the generic
fiber is not relatively nef. The simplest example is the singularity 3 − 3. After one blow-up,
the central and generic fibers are

4 − 1 − 4 resp. 3 − 4 − 1.

All curves marked 4 are then contracted as in (35). The central fiber is an M-modification. In
the generic fiber, the canonical class has degree − 1

2 on the image of the curve marked 1; so it is
not even a Q-modification.

(61.2) The semi-universal deformation of An := (xy = zn+1) is(
xy = zn+1 +

∑n−1
i=0 tiz

i
)
,

while the semi-universal deformation of its minimal resolution is obtained from(
xy =

∏n
i=0(z − si)

)
, (subject to

∑
si = 0)

by repeatedly blowing up the divisors (x = z − si = 0) as in (12.3).
Let σj be the jth elementary symmetric polynomial in the si. Then, over the Artin ring

k[s0, . . . , sn]/(σ0, . . . , σn), we get a nontrivial deformation of the minimal resolution, which con-
tracts to the trivial deformation of An.

A similar result holds for all Du Val singularities by [Art74], and for M-resolutions by [BC94].
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