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JET SCHEMES OF SINGULAR SURFACES OF TYPES
D0

4 AND D1
4 IN CHARACTERISTIC 2

YOSHIMUNE KOREEDA

Abstract. Let k be an algebraically closed field, S a variety over k and m a nonnegative integer. There is
a space S m over S , called the jet scheme of S of order m, parametrizing m-th jets on S . The fiber over the
singular locus of S is called the singular fiber.

In this paper, we consider the singular fibers of the jet schemes of 2-dimensional rational double points over
a field k of characteristic 2 whose resolution graph is of type D4. There are two types of such singularities,
of type D0

4 and type D1
4. We give the irreducible decomposition of the singular fiber and describe the

configuration of the irreducible components. The case of a D0
4-singularity is quite similar to the case of

characteristic 0 studied in the previous paper. The case of D1
4-singularity requires more elaborate analysis of

certain subsets of the singular fibers.

1. Introduction

Let k be an algebraically closed field of an arbitrary characteristic and S a surface over k. The notion
of a jet scheme was introduced by Nash in 1968 in a preprint, later published in 1995 [9]. Let m be a
nonnegative integer. Roughly speaking, an m-th jet of S is an infinitesimal map of order m from a germ
of a curve to S , and the scheme parametrizing m-th jets is called the m-th jet scheme. We denote the m-th
jet scheme of S by S m.

For nonnegative integers m ≥ m′, there is a natural morphism πS
m,m′ : S m → S m′ called the truncation

morphism. The 0-th jet scheme is identified with S and we denote the truncation morphism πS
m,0 by πS

m.
We are interested in the fiber S 0

m of πS
m over the singular locus Sing S of S , which we call the singular

fiber of S . In characteristic 0, the relation between the singular fibers of jet schemes of surfaces and the
exceptional curves of the minimal resolutions of singularities of surfaces was studied in a series of papers
by Mourtada [6, 7] and Mourtada-Plénat [8]. For a general surface S , the relation between the irreducible
components of S 0

m and the exceptional curves of the minimal resolution of S is not simple. However, for
rational double points, Mourtada gave a one-to-one correspondence between the irreducible components
of the singular fiber and the exceptional curves of the minimal resolution.

In [5], this correspondence was studied in more detail. For a fixed order m of the jet scheme of a
singular surface of type An or type D4, the configuration of the irreducible components of the singular
fiber was investigated. Furthermore, a graph was constructed using this information, and the graph turned
out to be isomorphic to the resolution graph of the singularity for a sufficiently large m. Concretely, the
graph is constructed as follows: Let Z1

m, ...,Z
n
m be the irreducible components of the singular fiber S 0

m.

Construction ([5, Construction 2.15]). Let V = {Z1
m, ...,Z

n
m}, and let E ⊆ {Zi

m ∩ Z j
m | i, j ∈ {1, ..., n}, i , j}

be the set of the maximal elements for the inclusion relation. Then we construct a graph Γ as the pair
(V, E), that is, the vertices of Γ are elements of V and there is given an edge between Zi

m and Z j
m if and

only if Zi
m ∩ Z j

m ∈ E.

In this paper, we consider 2-dimensional rational double points in positive characteristics, especially,
D4-type singular surfaces in characteristic 2.
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First, we consider the irreducible decomposition of the singular fiber in any characteristic. For singular
surfaces of type An, the defining equation of the surface is given by xy − zn+1 in any characteristics.
Here and henceforth, the singular point is at the origin. In this case the irreducible decomposition of the
singular fiber was given by Mourtada in [6]. For a singular surface of type Dn for n ≥ 4, the defining
equation is x2 − y2z+ zn in characteristic 0. In the first possible case n = 4, if the characteristic is a prime
different from 2, the defining equation is the same as in characteristic 0. One can check that the arguments
in [7] work also in this case.

In characteristic 2, however, there are two different types of singularities with the resolution graph
of type D4. In Artin [1], one is given by x2 + y2z + yz2, called a singularity of type D0

4, and the other
given by x2 + y2z + yz2 + xyz, called a singularity of type D1

4. We note that the equation of a singularity
of type D0

4 is weighted homogenous while that of a singularity of type D1
4 is not. In Mourtada [7], it

was important in giving the irreducible decomposition of the singular fibers that the defining equation is
weighted homogenous. Thus, for a singular surface of type D0

4, we will give the irreducible decomposition
of the singular fiber using arguments as in Mourtada [7]. On the other hand, for a singular surface of type
D1

4, we have to find another way to prove that certain sets are irreducible. In this paper, we do this by a
careful study of the codimensions of certain subsets of the singular fiber.

Second, as for the configuration of the irreducible components of the singular fiber, we consider the
inclusion relations among their intersections as in [5]. For the singular surfaces of type An, we gave
the irreducible decomposition of the intersections of the irreducible components of the singular fiber in
characteristic 0 in [5]. These decompositions are independent of the characteristics, so the inclusion
relations are the same as in [5] in any characteristic. Next, we consider the singular surfaces of type D4.
In this case, while Mourtada gave the irreducible decomposition of the singular fiber in characteristic
0 in [7], generators of defining ideals of irreducible components were not known. Notwithstanding, in
characteristic 0, we could determine the set E, and hence the graph Γ, in Construction in [5]. If the
characteristic is greater than 2, we can determine the configuration using the same arguments as in [5]
and we do not deal with these cases in this paper. If the characteristic is 2, the arguments need some
modification, and this is the case that we will deal with in this paper.

The following two theorems are the main results in this paper. First, we give the irreducible decompo-
sition of the singular fiber.

Theorem 1.1. Let k be an algebraically closed field of characteristic 2 and S ⊂ A3 the surface defined
by f = x2 + y2z + yz2 or g = x2 + y2z + yz2 + xyz in the affine space over k. If m ≥ 5, the irreducible
decomposition of the singular fiber S 0

m is given by
S 0

m = Z0
m ∪ Z1

m ∪ Z2
m ∪ Z3

m,
where Z0

m, Z1
m, Z2

m and Z3
m are as in Definition 3.6 or Definition 4.7.

Second, we describe the inclusion relations between the intersections of irreducible components of the
singular fiber.

Theorem 1.2. Let k be an algebraically closed field of characteristic 2, S ⊂ A3 the surface defined
by f = x2 + y2z + yz2 or g = x2 + y2z + yz2 + xyz in the affine space over k, Z0

m, ...,Z
3
m the irreducible

components of the singular fiber S 0
m as in Definition 3.6 or Definition 4.7.

(a) For 0 ≤ i < j ≤ 3, Zi
m ∩ Z j

m ⊊ Z0
m.

(b) For 1 ≤ i, j ≤ 3 with i , j, Z0
m ∩ Zi

m ⊈ Z0
m ∩ Z j

m.
(c) For 1 ≤ i, j ≤ 3 with i , j, Zi

m ∩ Z j
m ⊊ Z0

m ∩ Zi
m.

(d) For 1 ≤ i < j ≤ 3 and 1 ≤ l ≤ 3, Z0
m ∩ Zl

m ⊈ Zi
m ∩ Z j

m.
In particular, for 0 ≤ i < j ≤ 3, Zi

m ∩ Z j
m is maximal in {Zi

m ∩ Z j
m | i, j ∈ {0, 1, 2, 3}, i , j} with respect to

the inclusion relation if and only if (i, j) = (0, 1), (0, 2), (0, 3).

The next step would be the case of type Dn with n ≥ 5, but the calculation becomes more and more
difficult. For instance, for n = 5, the author could calculate the irreducible components of S 0

m only for
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m ≤ 8 in characteristic 0 using Macaulay2 on a personal computer. In characteristic 2, the calculations
become somewhat simpler, and we hope that the case of characteristic 2 will give some insight into the
characteristic 0 case.

The organization of this paper is as follows. In section 2, we fix some notations on jet schemes
and rational double points in characteristic 2. In section 3 and section 4, we give a description of the
defining ideals of the irreducible components of the singular fibers of the jet schemes of type D0

4- and
D1

4-singularities, and we study the intersections of the irreducible components to determine the inclusion
relations between them. Then we see that the graphs constructed as in Construction 3.17 are isomorphic
to the resolution graph of the singularity for a sufficiently large m.

Acknowledgement. The author would like to thank Nobuyoshi Takahashi for valuable advice. The
author would also like to thank the referees of the previous version for careful reading and for valuable
advice.

2. Preliminaries

In this section, we recall the definition of the jet schemes and the defining equations of rational double
points in A3 whose resolution graphs are of type D4, and fix some notations.

First of all, we recall the definition of the jet schemes. For more details on jet schemes, we refer to [2].
Let k be an algebraically closed field of an arbitrary characteristic, X a scheme of finite type over k and m
a nonnegative integer. We consider the following functor FX

m. Let Sch/k be the category of schemes over
k and Set the category of sets. The functor FX

m is given by
FX

m : Sch/k → Set; Z 7→ Homk(Z ×Spec k Spec k[t]/⟨tm+1⟩, X).
The functor FX

m is representable, and the object representing FX
m will be denoted by Xm ([2, Theorem 2.2],

[3, Proposition 2.2]).

Definition 2.1. The scheme Xm is called the m-th jet scheme of X.

We are interested in a neighborhood of two dimensional isolated hypersurface singularity, so we
consider an affine scheme embedded in A3 as the target space. In this case, we have the following explicit
description. Let us consider a scheme X which is embedded as a hypersurface in an affine space A3.
Then the affine coordinate ring Γ(X,OX) of X can be written in the form k[x, y, z]/⟨ f ⟩. We introduce some
notations.

Notation 2.2. Let Rm := k[x0, ..., xm, y0, ..., ym, z0, ..., zm], x := x0+x1t+· · ·+xmtm, y := y0+y1t+· · ·+ymtm,
z := z0 + z1t + · · · + zmtm ∈ Rm[t]/⟨tm+1⟩. For a polynomial f ∈ k[x, y, z], we expand f (x, y, z) as

f (x, y, z) = f (0) + f (1)t + · · · + f (m)tm

in Rm[t]/⟨tm+1⟩, where f ( j) ∈ Rm. Then the m-th jet scheme Xm can be written as
Xm = Spec Rm/⟨ f (0), ..., f (m)⟩.

For a closed point γ = (a0, ..., am, b0, ..., bm, c0, ..., cm) ∈ A3(m+1) = Spec Rm, we also write

γ = (
m∑

i=0

aiti,

m∑
i=0

biti,

m∑
i=0

citi).

Remark 2.3. In this notation, X0 = Spec R0/⟨ f (0)⟩ = Spec k[x0, y0, z0]/⟨ f (0)⟩. Thus, X0 � X and so we
identify X0 with X in the following.

We note the following fact.

Remark 2.4. If we give the weight i to the variables xi, yi, zi for 0 ≤ i ≤ m, then the polynomial f (n) is
homogenous of degree n for 0 ≤ n ≤ m. Indeed, each term of x, y or z has the same degree in xi, yi, zi

and in t, and so the same holds for f (x, y, z). Moreover, f (n) is the coefficient of tn in f (x, y, z), hence the
claim.
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In the following sections, we consider reductions of the polynomials f (i) modulo the ideals generated
by x j’s, y j’s and z j’s for different ranges of j. Hence we set up the following notation.

Notation 2.5. Let m, p, q, r ∈ Z>0. For p, q, r ≤ m + 1, we set
Lpqr = ⟨x0, ..., xp−1, y0, ..., yq−1, z0, ..., zr−1⟩ ⊂ Rm.

Moreover, let
xp = xptp + xp+1tp+1 + · · · + xmtm,

yq = yqtq + yq+1tq+1 + · · · + ymtm, and
zr = zrtr + zr+1tr+1 + · · · + zmtm.

(For p > m, q > m or r > m, we think of the right-hand sides as 0.) For a polynomial f ∈ k[x, y, z], we
expand f (xp, yq, zr) as

f (xp, yq, zr) = f (0)
pqr + f (1)

pqrt + · · · + f (m)
pqr tm

in Rm[t]/⟨tm+1⟩, where f ( j)
pqr ∈ Rm. Clearly, f ( j)

pqr ∈ k[xp, ..., xm, yq, ..., ym, zr, ..., zm] holds.

Remark 2.6. For 0 ≤ j ≤ m, we have
f ( j) ≡ f ( j)

pqr mod Lpqr.
In particular,

Lpqr + ⟨ f (0), ..., f (m)⟩ = Lpqr + ⟨ f
(0)
pqr, ..., f (m)

pqr ⟩.

Next, we define the truncation morphisms. Let m,m′ ∈ Z≥0 with m ≥ m′.

Definition 2.7. The truncation morphism
πX

m,m′ : Xm → Xm′

is defined as the morphism induced by the natural morphism Spec k[t]/⟨tm′+1⟩ → Spec k[t]/⟨tm+1⟩. We
write

ϖX
m,m′ : Γ(Xm′ ,OXm′ )→ Γ(Xm,OXm )

for the corresponding ring homomorphism. When X = A3, we use πm,m′ (resp. ϖm,m′ ) instead of πA3

m,m′

(resp. ϖA3

m,m′ ). We write πX
m (resp. ϖX

m) for πX
m,0 (resp. ϖX

m,0) and regard it as a morphism from Xm to X
(resp. Γ(X,OX) to Γ(Xm,OXm )).

We are interested in the fiber of the truncation morphism at a singular point, so we introduce the
following term.

Definition 2.8. Let X ⊆ A3 be a surface with an isolated singular point at the origin 0 and m a positive
integer. The fiber π−1

m (0) of the truncation morphism at the singular point is called the singular fiber and
is denoted by X0

m.

The following remark explains the relation between ideals in Γ(Xm,OXm ) and Γ((A3)m,O(A3)m ).

Remark 2.9. Recall that
Rm := Γ((A3)m,O(A3)m ) = k[x0, ..., xm, y0, ..., ym, z0, ..., zm].

Let X be V( f ), im : Xm → (A3)m the natural inclusion and ιm : Rm → Γ(Xm,OXm ) the corresponding
ring homomorphism. For any I ⊂ Rm with I ⊃ ⟨ f (0), ..., f (m)⟩, we set Ĩ := ιm(I). Then, im(V(Ĩ)) = V(I)
clearly holds. Under this inclusion morphism im, Xm and its closed subschemes are identified with closed
subschemes in (A3)m.

We can describe the inverse images by the truncation morphism as follows: Suppose m ≥ m′ and let
Z ⊆ Xm′ be a closed subscheme defined by Ĩ ⊂ Γ(Xm′ ,OXm′ ), I ⊂ Rm′ an ideal with I ⊃ ⟨ f (0), ..., f (m′)⟩ and
ιm′ (I) = Ĩ. Then a defining ideal of (πX

m,m′ )
−1(Z) = (πX

m,m′ )
−1(V(I)) is ϖX

m,m′ (Ĩ) · Γ(Xm,OXm ) and this ideal
satisfies

ϖX
m,m′ (Ĩ) · Γ(Xm,OXm ) = ιm(ϖm,m′ (I) · Rm + ⟨ f (m′+1), f (m′+2), ..., f (m)⟩).
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Hence, under the above identification, the defining ideal of (πX
m,m′ )

−1(Z) ⊆ (A3)m is

ϖm,m′ (I) · Rm + ⟨ f (m′+1), f (m′+2), ..., f (m)⟩

in Rm.

Throughout this paper, we identify Xm and its closed subschemes with the corresponding subschemes
in (A3)m by im.

The following proposition and remark describe the inverse images of the smooth locus by the truncation
morphism.

Proposition 2.10 ([2, Proposition 2.4]). Let X,Y be schemes over k. If f : X → Y is an étale morphism,
then Xm � Ym ×Y X for every m ∈ Z≥0.

Remark 2.11. If X is an n-dimensional variety, then πm : (Xsm)m → Xsm is a locally trivial fibration with
the fiber Anm by Proposition 2.10, where Xsm = X − Sing X. Hence π−1

m (Xsm) is an irreducible component
of Xm, and we call it the main component.

In general, the m-th jet scheme Xm is not irreducible. However, if X has only rational double points,
then Xm is irreducible and consists of the main component ([4, Corollary 10.2.9]).

Next, we recall the defining equations of singularities in A3 whose resolution graphs are of type D4.
In positive characteristic other than 2, a surface singularity of type D4 can be defined by x2 − y2z + z3,
which is the same as in the case of characteristic 0. On the other hand, in characteristic 2, there are two
singularities ([1, Section 3]): a singularity of type D0

4, defined by

f = x2 + y2z + yz2,

and a singularity of type D1
4, defined by

g = x2 + y2z + yz2 + xyz.

In characteristic different from 2, they both give a singularity of type D4.
To conclude this section, we give the lemmas that will be used in the following sections.
One key point in the description of the singular fibers in [7] was that f ( j) is often of the form Ayi + B

(resp. Azi + B) where A and B do not contain yl (resp. zl) with l ≥ i. Hence we set up the following
notation.

Notation 2.12. Let h ∈ Rm. The sum of the terms in h containing yi (resp. zi) with the largest index i is
denoted by Ty(h) (resp. Tz(h)).

Example 2.13. If h = x2
3 + y2

2z2 + y2z2
2, then Ty(h) = y2

2z2 + y2z2
2. If h = x2

3 + y2
2z2 + y2z2

2 + y4z2
1, then

Ty(h) = y4z2
1.

For any polynomials f and g, we have the following.

Lemma 2.14. Let k be a field of characteristic 2 and f , g ∈ k[x, y, z] be defined by f = x2 + y2z+ yz2 and
g = x2 + y2z + yz2 + xyz. Assume p, q, r ∈ Z>0 and l ∈ Z≥0 with l ≤ m. Then we have

f (l)
pqr =

∑
u≥p,2u=l

x2
u +

∑
v≥q,w≥r,2v+w=l

y2
vzw +

∑
v≥q,w≥r,v+2w=l

yvz2
w

and
g(l)

pqr =
∑

u≥p,2u=l

x2
u +

∑
v≥q,w≥r,2v+w=l

y2
vzw +

∑
v≥q,w≥r,v+2w=l

yvz2
w +

∑
u≥p,v≥q,w≥r,u+v+w=l

xuyvzw.

Here, if there are no u, v and w satisfying the conditions, we regard the sums as 0. Furthermore, the
following hold.

(a) If l < 2p, l < 2q + r and l < q + 2r, then we have
f (l)
pqr = g(l)

pqr = 0.
(b) If l = 2p, l < 2q + r and l < q + 2r, then we have
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f (l)
pqr = g(l)

pqr = x2
p.

(c) If (p >)q = r and l = 2p = 3q, then
f (l)
pqq = g(l)

pqq = x2
p + y2

qzq + yqz2
q.

(d) If (p >)q = r and l = 3q < 2p, then
f (l)
pqq = g(l)

pqq = y2
qzq + yqz2

q = yqzq(yq + zq).
(e) If p ≥ q > r and l ≥ 2p = q + 2r, then

Ty( f (l)
pqr) = Ty(g(l)

pqr) = yl−2rz2
r .

(f) If p ≥ r > q and l ≥ 2p = 2q + r, then
Tz( f (l)

pqr) = Tz(g
(l)
pqr) = y2

qzl−2q.
(g) If p > q = r and l > 3q, then

Ty( f (l)
pqq) = Ty(g(l)

pqq) = yl−2qz2
q.

(h) If p > q = r and l > 3q, then
Tz( f (l)

pqq) = Tz(g
(l)
pqq) = y2

qzl−2q.

Remark 2.15. We note that if p, q, r satisfy the above conditions (a)–(d), then there are no terms coming
from xyz in g(l)

pqr. In particular, the polynomial g(2p)
pqq = x2

p + y2
qzq + yqz2

q appearing in (c) has the same
form as the defining equation f of a singular surface of type D0

4. Since the D0
4-type singular surface

is irreducible, g(2p)
pqq is also irreducible in k[xp, yq, zq]. Moreover, if p, q, r satisfy the above conditions

(e)–(h), then there are no terms coming from xyz in Ty(g(l)
pqr) and Tz(g

(l)
pqr).

Proof. First of all, we note that

x2
p = (xptp + xp+1tp+1 + · · · + xmtm)2

= x2
pt2p + x2

p+1t2(p+1) + · · · + x2
mt2m,

and similarly for y2
q and z2

r , since we are working in characteristic 2.
Since f (l)

pqr and g(l)
pqr are the coefficient of tl in the expansion of f (xp, yq, zr) = x2

p + y2
qzr + yqz2

r and
g(xp, yq, zr) = x2

p + y2
qzr + yqz2

r + xpyqzr, we obtain

f (l)
pqr =

∑
u≥p,2u=l

x2
u +

∑
v≥q,w≥r,2v+w=l

y2
vzw +

∑
v≥q,w≥r,v+2w=l

yvz2
w

and

g(l)
pqr =

∑
u≥p,2u=l

x2
u +

∑
v≥q,w≥r,2v+w=l

y2
vzw +

∑
v≥q,w≥r,v+2w=l

yvz2
w +

∑
u≥p,v≥q,w≥r,u+v+w=l

xuyvzw

by a direct calculation.
Before we begin the proof of (a)–(h), we note that the difference between f (l) and g(l) is the terms

coming from xyz. As we saw in Remark 2.15, the results of Lemma 2.14 are the same for f and g. Noting
that every term in (xyz)(l) is of the form xi

uy j
vzk

w with i, j, k > 0 and that f (l) contains no such terms, it
suffices to prove Lemma 2.14 for g.

Let us prove (a), (b), (c) and (d). Note, first of all, that the lowest exponent of t appearing in x2
p (resp.

y2
qzr, yqz2

r , xpyqzr) is 2p (resp. 2q + r, q + 2r, p + q + r).
For (a), we only have to show that the lowest exponent of t in g(xp, yq, zr) is greater than l. By the

conditions in (a), we have l < 2p, l < 2q + r and l < q + 2r, so we only have to check l < p + q + r. From
the assumption, we have p > l/2 and q+ r > 2l/3, and then that p+q+ r > 7l/6 > l. Thus g(l)

pqr = 0 holds.
For (b), again we only have to show that p + q + r > l. By assumption in (b) p = l/2 and q + r > 2l/3,

so p + q + r > 7l/6 > l.
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For (c), we have l = 2p = 3q by assumption and x2
p, y2

qzq and yqz2
q give rise to terms x2

p, y2
qzq and yqz2

q,
so we only have to show that p + q + q > l. From the assumption p > q, so l = 3q < p + q + q. Hence
g(l)

pqq = x2
p + y2

qzq + yqz2
q.

For (d), we have 2p > l and p > q by assumption, so p + q + q > 3q = l. Therefore,

g(3q)
pqq = y2

qzq + yqz2
q = yqzq(yq + zq)

holds.
Before proving the statements (e)–(h), let us find out the terms containing yi (resp. zi) with the largest

i in (y2
qzr)(l), (yqz2

r )(l) and (xpyqzr)(l), where we write the coefficient of tl in y2
qzr as (y2

qzr)(l), and so on.
First, we look at Ty((y2

qzr)(l)) (resp. Tz((yqz2
r )(l))) (see Notation 2.12). If l < 2q+ r (resp. l < q+ 2r), it

is obvious that (y2
qzr)(l) = 0 (resp. (yqz2

r )(l) = 0), so we assume l ≥ 2q + r (resp. l ≥ q + 2r). If l − r (resp.
l − q) is even, then

Ty((y2
qzr)(l)) = y2

l−r
2

zr (resp. Tz((yqz2
r )(l)) = yqz2

l−q
2

),

and if l − r (resp. l − q) is odd, then

Ty((y2
qzr)(l)) = y2

l−r−1
2

zr+1 (resp. Tz((yqz2
r )(l)) = yq+1z2

l−q−1
2

).

Second, assuming l ≥ q + 2r (resp. l ≥ 2q + r),

Ty((yqz2
r )(l)) = yl−2rz2

r (resp. Tz((y2
qzr)(l)) = y2

qzl−2q).

Third, if l ≥ p + q + r, then

Ty((xpyqzr)(l)) = xpyl−p−rzr (resp. Tz((xpyqzr)(l)) = xpyqzl−p−q),

and if l < p + q + r, then (xpyqzr)(l) = 0.
Now, we prove (e) (resp. (g)). Since the terms Ty((y2

qzr)(l)), Ty((yqz2
r )(l)) and Ty((xpyqzr)(l)) are as

above, we only have to show that l− 2r > (l− r)/2 and l− 2r > l− p− r. First, we prove l− 2r > (l− r)/2.
By the assumption q > r and l ≥ q + 2r (resp. l > 3q = 3r), so l > 3r and this is equivalent to
l − 2r > (l − r)/2. Moreover, p > r by the assumption. So l − 2r > l − p − r. Thus, Ty(g(l)

pqr) = yl−2rz2
r

(resp. Ty(g(l)
pqq) = yl−2qz2

q = yl−2rz2
r ).

By symmetry, we also have (f) and (h). □

Focusing on g, we have the following lemma.

Lemma 2.16. Assume p, q, r ∈ Z>0 and l ∈ Z≥0 with l ≤ m.
(a,g) If l < 2Z and l < 2q + r, l < q + 2r and l < p + q + r, then we have

g(l)
pqr = 0.

(b,g) If l = 2p′ with p ≤ p′, l < 2q + r, l < q + 2r and l < p + q + r, then we have
g(l)

pqr = x2
p′ .

The proof is basically the same as that of Lemma 2.14(a) and (b).
The next lemma is one of the key points in proving the irreducibility of certain closed subsets of the

singular fiber.

Lemma 2.17. Let S be the surface defined by f or g, S m the m-th jet scheme of S and S 0
m the singular

fiber for m ≥ 1.
(a) If Z ⊆ S m is an irreducible component, then codim(A3)m Z ≤ m+1 (or equivaelntly dim Z ≥ 2m+2).
(b) If Z ⊆ S 0

m is an irreducible component, then codim(A3)m Z ≤ m+2 (or equivaelntly dim Z ≥ 2m+1).

Proof. (a) The m-th jet scheme S m is defined by the ideal generated by m + 1 elements { f (0), ..., f (m)}, so
for any irreducible component Z ⊆ S m,
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codim(A3)m Z ≤ m + 1.

by Krull’s height theorem.
(b) The singular fiber S 0

m is defined by

L111 + ⟨ f (0), ..., f (m)⟩ = L111 + ⟨ f
(0)
111, ..., f (m)

111 ⟩

(resp. L111 + ⟨g(0), ..., g(m)⟩ = L111 + ⟨g
(0)
111, ..., g

(m)
111⟩),

from Remark 2.9 and Remark 2.6. By Lemma 2.14(a), we have

f (0)
111 = f (1)

111 = 0 (resp. g(0)
111 = g(1)

111 = 0)

and S 0
m is defined by the ideal generated by 3 + m + 1 − 2 = m + 2 elements. Thus as in (a), for any

irreducible component Z ⊆ S 0
m,

codim(A3)m Z ≤ m + 2.

□

3. Jet schemes of a singular surface of type D0
4

In this section, we deal with a singular surface of type D0
4. First, we find the irreducible decomposition

of the singular fiber. This can be done by the method of Mourtada [7]. Next, we determine the inclusion
relations among intersections of irreducible components of the singular fiber.

For the determination of the irreducible decomposition in the D0
4 case, the arguments are almost the

same as in characteristic 0.

Remark 3.1. In positive characteristic not equal to 2, a singular surface of type D4 is defined by
h = x2 − y2z + z3 in A3. We consider the transformation

x 7→ x,

y 7→ 1
6√4

y +
3√4
2 z,

z 7→ − 1
6√4

y +
3√4
2 z.

Then the polynomial f = x2 + y2z + yz2 is mapped to h.

Let S = V( f ) ⊆ A3 be a singular surface of type D0
4 over an algebraically closed field k of characteristic

2, S m the m-th jet scheme of S , S 0
m the singular fiber of S m and Rm = k[x0, ..., xm, y0, ..., ym, z0, ..., zm].

Moreover, we set
Lpqr = ⟨x0, ..., xp−1, y0, ..., yq−1, z0, ..., zr−1⟩

for positive integers p, q, r ∈ Z>0 with p, q, r ≤ m + 1.

Definition 3.2. For m ≥ 1, we define the following ideals in Rm:

J1
m = L211 + ⟨y1⟩ + ⟨ f (0), ..., f (m)⟩ = L221 + ⟨ f (0), ..., f (m)⟩,

J2
m = L211 + ⟨z1⟩ + ⟨ f (0), ..., f (m)⟩ = L212 + ⟨ f (0), ..., f (m)⟩,

J3
m = L211 + ⟨y1 + z1⟩ + ⟨ f (0), ..., f (m)⟩.

By Remark 2.9 and Ji
m ⊃ L111, these ideals include the defining ideal of the singular fiber, and hence

correspond to closed subsets in the singular fiber S 0
m.

We have the following symmetries:
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Notation 3.3. Let φ1 and φ2 be the automorphisms of Rm defined by

φ1 :


xi 7→ xi,

yi 7→ zi,

zi 7→ yi,

φ2 :


xi 7→ xi,

yi 7→ yi,

zi 7→ yi + zi.

These automorphisms φ1 and φ2 induce ring isomorphisms

(φ1)z1 : (Rm)z1 → (Rm)y1 and (φ2)y1 : (Rm)y1 → (Rm)y1 .

We write the isomorphisms corresponding to φ1, φ2, (φ1)z1 and (φ2)y1 as ψ1, ψ2, (ψ1)z1 and (ψ2)y1 ,
respectively. For simplicity, we write (φ1)z1 , (φ2)y1 , (ψ1)z1 and (ψ2)y1 as φ1, φ2, ψ1 and ψ2.

Lemma 3.4. (a) For m ≥ 1, i ∈ {0, ...,m} and k = 1, 2, φk preserve f (i) i.e.,
φk( f (i)) = f (i)

in Rm. In particular, the morphisms ψk preserve S m.
(b) For m ≥ 1,

φ1(J1
m · (Rm)z1 ) = J2

m · (Rm)y1

and
φ2(J2

m · (Rm)y1 ) = J3
m · (Rm)y1 .

(c) The morphisms φ1, φ2, ψ1 and ψ2 preserve the union, the intersection and the inclusion relations
of sets.

Proof. (a) Note that the automorphisms φ1 and φ2 are induced by the automorphisms of k[x, y, z] defined
by

φ1 :


x 7→ x,
y 7→ z,
z 7→ y,

φ2 :


x 7→ x,
y 7→ y,
z 7→ y + z,

and φ1( f ) = x2 + z2y + zy2 = f and

φ2( f ) = x2 + y2(y + z) + y(y + z)2

= x2 + y(y + z)(y + y + z)

= x2 + y(y + z)z = x2 + y2z + yz2,

where y + y = 0 since k is a field of characteristic 2. Since

f

 m∑
i=0

xiti,

m∑
i=0

yiti,

m∑
i=0

ziti

 = φk( f )

 m∑
i=0

xiti,

m∑
i=0

yiti,

m∑
i=0

ziti


= f

 m∑
i=0

φk(xi)ti,

m∑
i=0

φk(yi)ti,

m∑
i=0

φk(zi)ti


=

m∑
i=0

φk( f (i))ti

in Rm[t]/⟨tm+1⟩ for k = 1, 2, φk preserves the polynomials f (i) (i ∈ {0, ...,m}), and the induced automorphism
ψk preserves S m.

(b) We can easily check that

φ1((L211 + ⟨y1⟩) · (Rm)z1 ) = (L211 + ⟨z1⟩) · (Rm)y1

and

φ2((L211 + ⟨z1⟩) · (Rm)y1 ) = (L211 + ⟨y1 + z1⟩) · (Rm)y1 .
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By the assertion (a), we have φ1(J1
m · (Rm)z1 ) = J2

m · (Rm)y1 and φ2(J2
m · (Rm)y1 ) = J3

m · (Rm)y1 .

(c) The morphisms φ1, φ2, ψ1 and ψ2 are isomorphisms, so under these morphisms, the union, the
intersection and the inclusion relations of sets are preserved. □

We will show that J1
m, J

2
m and J3

m define irreducible components of certain open subsets of S 0
m.

Proposition 3.5. For m ≥ 3, the ideal J1
m · (Rm)z1 is a prime ideal in (Rm)z1 , and J2

m · (Rm)y1 and J3
m · (Rm)y1

are prime ideals in (Rm)y1 . Moreover, the heights of the ideals J1
m · (Rm)z1 , J2

m · (Rm)y1 and J3
m · (Rm)y1 are

m + 2.

Proof. We prove that the ideal J1
m · (Rm)z1 is prime of height m + 2. Then by Lemma 3.4(b), it follows

that J2
m · (Rm)y1 and J3

m · (Rm)y1 are prime ideals of height m + 2 in (Rm)y1 .
First, we note that

J1
m = L221 + ⟨ f (0), ..., f (m)⟩ = L221 + ⟨ f

(0)
221, ..., f (m)

221 ⟩

by Remark 2.6. Then, we have

f (0)
221 = f (1)

221 = f (2)
221 = f (3)

221 = 0

by Lemma 2.14(a) and

Ty( f (l)
221) = yl−2z2

1

for 4 ≤ l ≤ m by Lemma 2.14(e). Hence there exists hl ∈ k[x2, ..., xm, y2, ..., yl−3, z1, ..., zm] such that

f (l)
221 = yl−2z2

1 + hl

for 4 ≤ l ≤ m. Since

yl−2 +
hl

z2
1

=
1
z2

1

f (l)
221 ∈ J1

m · (Rm)z1 ,

we have

J1
m · (Rm)z1 = (L221 + ⟨ f

(0)
221, ..., f (m)

211 ⟩) · (Rm)z1

=

L221 +

〈
y2 +

h4

z2
1

, ..., ym−2 +
hm

z2
1

〉 · (Rm)z1 .

Thus the ideal J1
m · (Rm)z1 is a prime ideal of (Rm)z1 and the height of J1

m · (Rm)z1 is m + 2. □

Let us define some ideals of Rm and the corresponding closed subsets of (A3)m.

Definition 3.6. For m ≥ 1, we define

I0
m = L222 + ⟨ f (0), ..., f (m)⟩,

I1
m = J1

m · (Rm)z1 ∩ Rm,

I2
m = J2

m · (Rm)y1 ∩ Rm,

I3
m = J3

m · (Rm)y1 ∩ Rm.

Furthermore, we define closed subsets

Zi
m := V(Ii

m)

for 0 ≤ i ≤ 3.

Remark 3.7. (a) By Proposition 3.5, the ideals I1
m, I2

m and I3
m for m ≥ 3 are prime of height m + 2,

and the closed subsets Z1
m, Z2

m and Z3
m are irreducible of codimension m + 2 in (A3)m.
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(b) By Definition 3.6, we have

Z1
m = V(J1

m) ∩ D(z1),

Z2
m = V(J2

m) ∩ D(y1),

Z3
m = V(J3

m) ∩ D(y1),

where D(h) (h ∈ Rm) is an open subset defined by (A3)m−V(⟨h⟩). Moreover, we have y1+z1 ∈ J3
m,

hence we have I3
m = J3

m · (Rm)y1 ∩ Rm = J3
m · (Rm)z1 ∩ Rm and therefore

Z3
m = V(J3

m) ∩ D(z1).

(c) For m ≥ 4, we have f (4)
222 = x2

2 by Lemma 2.14(b). Hence
Z0

m = V(L322 + ⟨ f (0), ..., f (m)⟩).

Here, we note that Z1
m, Z2

m and Z3
m have the following symmetries.

Lemma 3.8. Assume m ≥ 3. The closed subsets Z0
m, Z1

m, Z2
m and Z3

m are permutated by ψ1 and ψ2 (see
Notation 3.3) as follows.

(a) ψ1(Z0
m) = Z0

m, ψ1(Z1
m) = Z2

m, ψ1(Z2
m) = Z1

m and ψ1(Z3
m) = Z3

m.
(b) ψ2(Z0

m) = Z0
m, ψ2(Z1

m) = Z1
m, ψ2(Z2

m) = Z3
m and ψ2(Z3

m) = Z2
m.

Proof. (a) We may think of φ1 as an automorphism of the quotient field of Rm which preserves Rm and
maps (Rm)z1 to (Rm)y1 and (Rm)y1 to (Rm)z1 . Arguing as in Lemma 3.4(b) and (c), we have

φ1(I0
m) = I0

m,

φ1(I1
m) = φ1(J1

m · (Rm)z1 ∩ Rm) = φ1(J1
m · (Rm)z1 ) ∩ Rm = J2

m · (Rm)y1 ∩ Rm = I2
m,

φ1(I2
m) = φ1(J2

m · (Rm)y1 ∩ Rm) = φ1(J2
m · (Rm)y1 ) ∩ Rm = J1

m · (Rm)z1 ∩ Rm = I1
m,

φ1(I3
m) = φ1(J3

m · (Rm)z1 ∩ Rm) = φ1(J3
m · (Rm)z1 ) ∩ Rm = J3

m · (Rm)y1 ∩ Rm = I3
m.

(see Remark 3.7(b)). Hence we have

ψ1(Z0
m) = Z0

m, ψ1(Z1
m) = Z2

m, ψ1(Z2
m) = Z1

m and ψ1(Z3
m) = Z3

m.

We can prove (b) in the same way as (a). □

In the following, we give the irreducible decomposition of the singular fiber S 0
m. First of all, we give

the decomposition of S 0
m.

Proposition 3.9. For m ≥ 3, we have

S 0
m = Z0

m ∪ Z1
m ∪ Z2

m ∪ Z3
m.

Moreover, Z1
m, Z2

m and Z3
m are pairwise distinct.

Proof. By Lemma 2.14(a) and (b), we have

f (0)
111 = f (1)

111 = 0,

f (2)
111 = x2

1.

Hence the defining ideal of S 0
m is√

⟨x0, y0, z0, x2
1, f (3), ..., f (m)⟩ =

√
⟨x0, y0, z0, x1, f (3)

211, ..., f (m)
211 ⟩.

Using Lemma 2.14(d), we have

f (3)
211 = y1z1(y1 + z1).
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Thus we have
S 0

m =V(⟨x0, x1, y0, y1, z0, f (4), ..., f (m)⟩) ∪ V(⟨x0, x1, y0, z0, z1, f (4), ..., f (m)⟩)

∪ V(⟨x0, x1, y0, z0, y1 + z1, f (4), ..., f (m)⟩)

=V(J1
m) ∪ V(J2

m) ∪ V(J3
m).

Since (A3)m = D(y1) ∪ D(z1) ∪ V(y1, z1) and S 0
m is closed, we have

S 0
m = S 0

m ∩ (A3)m = S 0
m ∩ D(y1) ∪ S 0

m ∩ D(z1) ∪ (S 0
m ∩ V(y1, z1)).

Note that V(J1
m) ∩ D(y1) = ∅ since y1 ∈ J1

m. Thus

S 0
m ∩ D(y1) = (V(J2

m) ∩ D(y1)) ∪ (V(J3
m) ∩ D(y1)).

Similarly,

S 0
m ∩ D(z1) = (V(J1

m) ∩ D(z1)) ∪ (V(J3
m) ∩ D(z1)).

By Remark 3.7, we have

S 0
m ∩ D(y1) = Z2

m ∪ Z3
m

and

S 0
m ∩ D(z1) = Z1

m ∪ Z3
m.

Clearly, we have S 0
m ∩ V(y1, z1) = V(I0

m) = Z0
m. Therefore,

S 0
m = V(J1

m) ∩ D(z1) ∪ V(J2
m) ∩ D(y1) ∪ V(J3

m) ∩ D(y1) ∪ (S 0
m ∩ V(y1, z1))

= Z0
m ∪ Z1

m ∪ Z2
m ∪ Z3

m.

Finally, we check that Z1
m, Z2

m and Z3
m are pairwise distinct. By Lemma 3.8, it suffices to show that

Z3
m ⊈ Z1

m. The jet P = (0, t, t) corresponds to the point where y1 = z1 = 1 and all of the other coordinates
are 0, and we see P ∈ Z3

m and P < V(J1
m) ⊇ Z1

m. Hence Z3
m ⊈ Z1

m. □

Next, we give the irreducible decomposition of the singular fiber for small m.

Proposition 3.10. For 0 ≤ m ≤ 4, the irreducible decomposition of the singular fiber S 0
m is as follows.

(a) S 0
0 = V(L111),

(b) S 0
1 = V(L111),

(c) S 0
2 = V(L211),

(d) S 0
3 = Z1

3 ∪ Z2
3 ∪ Z3

3 ,
(e) S 0

4 = Z1
4 ∪ Z2

4 ∪ Z3
4 .

Moreover, for 1 ≤ m ≤ 4, the codimension of any irreducible component Z ⊆ S 0
m is

codim(A3)m Z = m + 2.

Proof. (a) By Lemma 2.14(a), f (0)
111 = 0, so S 0

0 = V(L111).

(b) By Lemma 2.14(a), f (1)
111 = 0, so S 0

1 = V(L111).

(c) By Lemma 2.14(b), f (2)
111 = x2

1, so S 0
2 = V(L211).

(d) By Proposition 3.9 and Remark 3.7(a), S 0
3 = Z0

3 ∪ Z1
3 ∪ Z2

3 ∪ Z3
3 and Z1

3 , Z2
3 and Z3

3 are irreducible
and pariwise distinct. Note that J1

3 = L221 is prime, so I1
3 = J1

3 ⊊ L222 = I0
3 . Hence Z1

3 ⊋ Z0
3 . Thus the

irreducible decomposition of S 0
3 = Z1

3 ∪ Z2
3 ∪ Z3

3 .
(e) By Proposition 3.9,

S 0
4 = Z0

4 ∪ Z1
4 ∪ Z2

4 ∪ Z3
4 .
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Here, Z0
4 = S 0

4 ∩ V(y1, z1) is not an irreducible component. Indeed, we have

Z0
4 = V(L222 + ⟨ f

(4)
222⟩) = V(L322)

by Remark 3.7(c) and Lemma 2.14(b), and hence

codim(A3)4 V(L322) = 3 + 2 + 2 = 7,

while by Lemma 2.17(b), the codimension of the irreducible component of S 0
4 is at most 4+ 2 = 6. Thus,

S 0
4 ∩ V(y1, z1) is not an irreducible component of S 0

4 and, by Remark 3.7(a) and Proposition 3.9, the
irreducible decomposition of S 0

4 is given by

Z1
4 ∪ Z2

4 ∪ Z3
4 .

□

Next lemma is one key point to prove that Z0
m is irreducible for m ≥ 5.

Lemma 3.11. (a) For m = 5, Z0
5 = V(L322).

(b) For m ≥ 6,
Z0

m � A
11 × S m−6.

Proof. First note that, by Definition 3.6, Remark 2.6 and Remark 3.7(c), for m ≥ 5, Z0
m is defined by

I0
m = L322 + ⟨ f (0), ..., f (m)⟩ = L322 + ⟨ f

(0)
322, ..., f (m)

322 ⟩.

Moreover, by Lemma 2.14(a) and (b), we have

f (0)
322 = f (1)

322 = · · · = f (5)
322 = 0.

(a) Clearly, we have I0
5 = L322 + ⟨ f

(0)
322, ..., f (5)

322⟩ = L322. Hence Z0
5 = V(L322).

(b) We have

I0
m = L322 + ⟨ f

(6)
322, ..., f (m)

322 ⟩

for m ≥ 6. As in Notation 2.5, we write x3 = x3t3 + x4t4 + · · · + xmtm, y2 = y2t2 + y3t3 + · · · + ymtm and
z2 = z2t2 + z3t3 + · · · + zmtm and calculate f (x3, y2, z2);

f

 m∑
i=3

xiti,

m∑
i=2

yiti,

m∑
i=2

ziti

 = f

t3
m∑

i=3

xiti−3, t2
m∑

i=2

yiti−2, t2
m∑

i=2

ziti−2


= t6 f

 m∑
i=3

xiti−3,

m∑
i=2

yiti−2,

m∑
i=2

ziti−2


= t6( f (0)(x3, y2, z2) + f (1)(x3, x4, y2, y3, z2, z3)t + · · ·

+ f (m−6)(x3, ..., xm−3, y2, ..., ym−4, z2, ..., zm−4)tm−6 + · · ·
)
.

(Note that the second equality holds because f is weighted homogenous.) We set

f (l)
6 := f (l−6)(x3, ..., xl−3, y2, ..., yl−4, z2, ..., zl−4)

for 6 ≤ l ≤ m, then f (l)
322 = f (l)

6 . Hence

Z0
m = V(L322 + ⟨ f

(6)
322, ..., f (m)

322 ⟩)

= V(L322 + ⟨ f
(6)
6 , ..., f (m)

6 ⟩) � A
11 × S m−6.

□

Now, we prove that Z0
m is irreducible of dimension 2m + 1 for m ≥ 5. To prove this claim, it suffices to

show that S m is irreducible of dimension 2(m + 1) for m ≥ 0 by the previous lemma.
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Remark 3.12. In [4, Corollary 10.2.9], the following statement is proven: For a locally complete
intersection variety X and every positive integer m, the m-th jet scheme Xm of X is irreducible if and only
if X has Mather-Jacobian canonical singularities.

We note that if X is a normal locally complete intersection variety, then the notion of Mather-Jacobian
canonical singularities coincides with the notion of canonical singularities by Proposition 10.1.10 in [4].
Hence a singular surface of type D0

4 is Mather-Jacobian canonical, and the above result can be applied.
For the reader’s convenience, we prove the irreducibility of S m by a direct calculation.

Proposition 3.13. (a) For m ≥ 0, S m is irreducible of dimension 2(m + 1) (or equivalently of
codimension m + 1 in (A3)m).

(b) For m ≥ 5, Z0
m is irreducible of dimension 2m+1 (or equivalently of codimension m+2 in (A3)m).

Proof. By Remark 2.11,

S m = (πS
m)−1(S sm) ∪ S 0

m

and (πS
m)−1(S sm) is irreducible of dimension 2(m + 1), where S sm = S − Sing S . By Lemma 2.17(a), in

order to show the assertion (a) for S m, it suffices to show that dim S 0
m ≤ 2m + 1.

For 0 ≤ m ≤ 4, this holds by Proposition 3.10. Thus (a) holds for 0 ≤ m ≤ 4.
Before proving the statements for m ≥ 5, we note that, by Proposition 3.9, we have

S 0
m = Z0

m ∪ Z1
m ∪ Z2

m ∪ Z3
m,

and, by Remark 3.7, Z1
m, Z2

m and Z3
m are irreducible of dimension 2m + 1. Thus it suffices to show that the

remaining part of S 0
m, i.e. Z0

m, is irreducible of dimension 2m + 1 for m ≥ 5, i.e. the statement (b).
For m = 5, we have Z0

5 = V(L322) and Z0
5 is irreducible of dimension 3(5+ 1)− 7 = 11(= 2× 5+ 1) by

Lemma 3.11(a). Thus S 5 is irreducible of dimension 12.
For m ≥ 6, we assume that (a) holds for S m′ with 0 ≤ m′ < m and show the assertion for S m and

Z0
m. By Lemma 3.11(b), we have Z0

m � A
11 × S m−6. By the inductive hypothesis, S m−6 is irreducible of

dimension 2(m − 6 + 1) = 2m − 10. Hence Z0
m is irreducible of dimension

dim Z0
m = dim A11 × S m−6 = 11 + (2m − 10) = 2m + 1.

Thus S m is irreducible of dimension 2(m + 1). □

Now, we give the irreducible decomposition of S 0
m for m ≥ 5. In the following theorem, note that the

number of irreducible components of the singular fiber is constant.

Theorem 3.14. For m ≥ 5, the irreducible decomposition of the singular fiber S 0
m is given by

S 0
m = Z0

m ∪ Z1
m ∪ Z2

m ∪ Z3
m.

Proof. First of all, we note that, for 0 ≤ i ≤ 3, the closed subsets Zi
m are irreducible of dimension 2m + 1

by Remark 3.7 and Proposition 3.13(b). Moreover, by Proposition 3.9, we have
S 0

m = Z0
m ∪ Z1

m ∪ Z2
m ∪ Z3

m

for m ≥ 5. Hence all that remains is to check that Zi
m are pairwise distinct for 0 ≤ i ≤ 3. For m ≥ 5, we

have Z0
m ∩ (D(y1)∪D(z1)) = ∅while Zi

m ∩ (D(y1)∪D(z1)) , ∅ for 1 ≤ i ≤ 3, so Z0
m is different from Z1

m, Z2
m

and Z3
m. Moreover, by Proposition 3.9, Z1

m, Z2
m and Z3

m are pairwise distinct. This completes the proof. □

In the following, we determine the inclusion relation between the intersections of two irreducible
components of the singular fiber of a singular surface of type D0

4.

Theorem 3.15. Let k be an algebraically closed field of characteristic 2, S ⊂ A3 the surface defined by
f = x2 + y2z + yz2 in the affine space over k, S 0

m the singular fiber of the m-th jet scheme S m with m ≥ 5
and Z0

m, ...,Z
3
m its irreducible components as in Definition 3.6.

(a) For 0 ≤ i < j ≤ 3, Zi
m ∩ Z j

m ⊊ Z0
m.
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(b) For 1 ≤ i, j ≤ 3 with i , j, Z0
m ∩ Zi

m ⊈ Z0
m ∩ Z j

m.
(c) For 1 ≤ i, j ≤ 3 with i , j, Zi

m ∩ Z j
m ⊊ Z0

m ∩ Zi
m.

(d) For 1 ≤ i < j ≤ 3 and 1 ≤ l ≤ 3, Z0
m ∩ Zl

m ⊈ Zi
m ∩ Z j

m.
In particular, for 0 ≤ i < j ≤ 3, Zi

m ∩ Z j
m is maximal in {Zi

m ∩ Z j
m | i, j ∈ {0, 1, 2, 3}, i , j} with respect to

the inclusion relation if and only if (i, j) = (0, 1), (0, 2), (0, 3).

Remark 3.16. Over algebraically closed fields of characteristic 0, the same statment was proved in [5,
Theorem 3.17].

Proof. (a) By looking at the dimensions, we have Z0
m ∩Z j

m ⊊ Z0
m for j = 1, 2, 3. Hence the assertion holds

if i = 0, so we may assume that (i, j) = (1, 2) by Lemma 3.8. From the definitions of Zi
m (Definition 3.6),

it suffices to check that
√

I1
m + I2

m ⊇ I0
m. By the definitions of the ideals J1

m and J2
m, we have y1 ∈ J1

m and
z1 ∈ J2

m, hence
√

J1
m + J2

m ⊇ L222. Therefore
√

I1
m + I2

m ⊇
√

J1
m + J2

m ⊇ I0
m. By looking at the dimensions,

we have Z1
m ∩ Z2

m ⊊ Z0
m.

(b) By Lemma 3.8, we only have to show that Z0
m∩Z1

m ⊈ Z0
m∩Z2

m. Let us consider the jet γ = (0, 0, t2) ∈ S m.
We prove the following two claims:

( i ) γ ∈ Z0
m ∩ Z1

m,
(ii) γ < Z0

m ∩ Z2
m.

( i ) We can easily check that γ ∈ Z0
m by Definition 3.6. Let us consider the family

γs := (0, 0, st + t2) for s ∈ k.

If s , 0, then we have γs ∈ V(J1
m) and γs ∈ D(z1). Thus, taking the Zariski closure of V(J1

m) ∩ D(z1), we
have γ0 ∈ V(J1

m) ∩ D(z1) = Z1
m.

(ii) We show that z2 ∈

√
I0
m + I2

m, and then γ < Z0
m ∩ Z2

m. By Lemma 2.14,

f (5)
212 =

∑
u≥2,2u=5

x2
u +

∑
v≥1,w≥2,2v+w=5

y2
vzw +

∑
v≥1,w≥2,v+2w=5

yvz2
w = y2

1z3 + y1z2
2 = y1(y1z3 + z2

2).

Then we have y1z3 + z2
2 ∈ J2

m · (Rm)y1 ∩ Rm = I2
m, so

z2
2 = −y1z3 + (y1z3 + z2

2) ∈ I0
m + I2

m.

Hence we have z2 ∈

√
I0
m + I2

m and γ < Z0
m ∩ Z2

m. Therefore, we have Z0
m ∩ Zi

m ⊈ Z0
m ∩ Z j

m, or equivalently
Z0

m ∩ Zi
m ⊈ Z j

m, for i, j ∈ {1, 2, 3} with i , j.

(c) By the assertion (a), we have Zi
m ∩ Z j

m ⊆ Z0
m ∩ Zi

m for i, j ∈ {1, 2, 3} with i , j. If Zi
m ∩ Z j

m = Z0
m ∩ Zi

m,
then

Z0
m ∩ Zi

m = Z0
m ∩ Zi

m ∩ Z j
m ⊆ Z0

m ∩ Z j
m,

a contradiction to (b). Thus, Zi
m ∩ Z j

m ⊊ Z0
m ∩ Zi

m

(d) Take any i, j, l ∈ {1, 2, 3} with i , j and j , l (not necessarily i , l). If Z0
m ∩ Zl

m ⊆ Zi
m ∩ Z j

m, then

Z0
m ∩ Zl

m ⊆ Z0
m ∩ Zi

m ∩ Z j
m ⊆ Z0

m ∩ Z j
m,

a contradiction to (b). Hence Z0
m ∩ Zl

m ⊈ Zi
m ∩ Z j

m. □

Now we define a graph Γ from the information of S 0
m as follows.

Construction 3.17 ([5, Construction 2.15]). The graph Γ(S 0
m) = (V, E) is constructed as follows.

• V is the set of irreducible components of S 0
m.
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• E is the set of all maximal elements of {Zi
m ∩ Z j

m | i, j ∈ {0, 1, 2, 3}, i , j}, and Zi
m ∩ Z j

m ∈ E
connects Zi

m and Z j
m.

In other words, there is given an edge between Zi
m and Z j

m if and only if Zi
m ∩ Z j

m is maximal among the
intersections of two distinct irreducible components.

Corollary 3.18. For a singular surface S of type D0
4 and m ≥ 5, the graph Γ(S 0

m) obtained by Construction
3.17 is isomorphic to the resolution graph of S .

Proof. By Theorem 3.14 and Theorem 3.15, Γ(S 0
m) is the pair of V = {Z0

m,Z
1
m,Z

2
m,Z

3
m} and

E = {Z0
m ∩ Z1

m,Z
0
m ∩ Z2

m,Z
0
m ∩ Z3

m}. Hence Γ(S 0
m) can be described as

Z2
m

Z1
m Z0

m

Z3
m,

which is a Dynkin diagram of type D4. □

4. Jet schemes of a singular surface of type D1
4

In this section, we prove the statements of Theorem 1.1 and Theorem 1.2 on the singular surface of
type D1

4. The proof goes mostly in the same way as in [7] and Theorem 3.14, but we need more elaborate
analysis to show that Z0

m is irreducible.
Let g = x2+y2z+yz2+ xyz and S = V(g) ⊆ A3, which has a singularity of type D1

4 at 0 ([1, Section 3]).
Furthermore, let Rm = k[x0, ..., xm, y0, ..., ym, z0, ..., zm], S m the m-th jet scheme of S and S 0

m the singular
fiber of S m. Here, we note that the equation g = x2 + y2z + yz2 + xyz is not weighted homogenous, and
hence a certain part of the arguments of Mourtada [7] does not work in this case. More specifically, we
used the fact that the equation is weighted homogenous to prove Lemma 3.11(b), but in this case we cannot
use this idea. In this section, we focus on certain subsets of Z0

m and their dimensions (or equivalently
codimensions) to prove the irreducibility of Z0

m.
Let the ideal Lpqr := ⟨x0, ..., xp−1, y0, ..., yq−1, z0, ..., zr−1⟩ ⊆ Rm = k[x0, ..., xm, y0, ..., ym, z0, ..., zm] for

0 < p, q, r ≤ m + 1 be as in the previous section.

Definition 4.1. For m ≥ 1, we consider the following ideals in Rm:
J1

m = L211 + ⟨y1⟩ + ⟨g(0), ..., g(m)⟩ = L221 + ⟨g(0), ..., g(m)⟩,

J2
m = L211 + ⟨z1⟩ + ⟨g(0), ..., g(m)⟩ = L212 + ⟨g(0), ..., g(m)⟩,

J3
m = L211 + ⟨y1 + z1⟩ + ⟨g(0), ..., g(m)⟩.

By Remark 2.9 and Ji
m ⊃ L111 for i = 1, 2, 3, these ideals include the defining ideal of the singular

fiber, and hence correspond to closed subsets in the singular fiber S 0
m.

We have the following symmetries:

Notation 4.2. Let φ1 and φ2 be the automorphisms of Rm defined by

φ1 :


xi 7→ xi,

yi 7→ zi,

zi 7→ yi,

φ2 :


xi 7→ xi,

yi 7→ yi,

zi 7→ xi + yi + zi.

These automorphisms φ1 and φ2 induce ring isomorphisms
(φ1)z1 : (Rm)z1 → (Rm)y1 and (φ2)y1 : (Rm)y1 → (Rm)y1 .
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We write the isomorphisms corresponding to φ1, φ2, (φ1)z1 and (φ2)y1 as ψ1, ψ2, (ψ1)z1 and (ψ2)y1 ,
respectively. For simplicity, we write (φ1)z1 , (φ2)y1 , (ψ1)z1 and (ψ2)y1 as φ1, φ2, ψ1 and ψ2.

Lemma 4.3. (a) For m ≥ 1, i ∈ {0, ...,m} and k = 1, 2, φk preserve g(i) i.e.,
φk(g(i)) = g(i)

in Rm. In particular, the morphisms ψk preserve S m.
(b) For m ≥ 1,

φ1(J1
m · (Rm)z1 ) = J2

m · (Rm)y1

and
φ2(J2

m · (Rm)y1 ) = J3
m · (Rm)y1 .

(c) The morphisms φ1, φ2, ψ1 and ψ2 preserve the union, the intersection and the inclusion relations
of sets.

Proof. The proofs of the assertions (b) and (c) are the same as those of Lemma 3.4(b) and (c), so we only
check the assertion (a).

Note that the automorphisms φ1 and φ2 are induced by the automorphisms of k[x, y, z] defined by

φ1 =


x 7→ x,
y 7→ z,
z 7→ y,

φ2 =


x 7→ x,
y 7→ y,
z 7→ x + y + z,

and φ1(g) = x2 + z2y + zy2 + xzy = g and

φ2(g) = x2 + y2(x + y + z) + y(x + y + z)2 + xy(x + y + z)

= x2 + y(x + y + z)(y + (x + y + z) + x)

= x2 + y(x + y + z)z = g,

where y + (x + y + z) + x = 2x + 2y + z = z since k is a field of characteristic 2. In the same way as
in Lemma 3.4(a), φk preserves the polynomials g(i) (i ∈ {0, ...,m}), and the induced automorphism ψk

preserves S m. □

Now, we prove the following lemma. This lemma is one key point to prove that Zi
m’s (these will be

defined in Definition 4.7) are irreducible for 0 ≤ i ≤ 3.

Lemma 4.4. For m, p, q, r ∈ Z>0 with m ≥ 2p, the following hold.
(a) If p ≥ q > r and 2p = q + 2r, then (S m ∩ V(Lpqr)) ∩ D(zr) is irreducible and has codimension

m − p + q + r + 1 = m + p − r + 1 in (A3)m.
(b) If p ≥ r > q and 2p = 2q + r, then (S m ∩ V(Lpqr)) ∩ D(yq) is irreducible and has codimension

m − p + q + r + 1 = m + p − q + 1 in (A3)m.
(c) If p > q = r and 2p > 3q, then

(S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(yq) = (S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(zq)

holds, and this set is irreducible of codimension m + p − q + 1 in (A3)m.
(d) If p > q = r and 2p = 3q, then

(S m ∩ V(Lpqq)) ∩ D(yq) = (S m ∩ V(Lpqq)) ∩ D(zq)

holds, and this set is irreducible of codimension m − p + 2q + 1 = m + p − q + 1 in (A3)m. If
furthermore m = 2p, then

(S m ∩ V(Lpqq)) ∩ D(yq) = S m ∩ V(Lpqq) = V(Lpqq + ⟨g
(2p)
pqq ⟩).
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Proof. Before proving the lemma, note that

S m ∩ V(Lpqr) = V(Lpqr + ⟨g(0), ..., g(m)⟩) = V(Lpqr + ⟨g(0)
pqr, ..., g

(m)
pqr⟩)

by Remark 2.6.

(a) By Lemma 2.14(e), for an integer l satisfying 2p ≤ l ≤ m, there exists a polynomial
h(l) ∈ k[xp, ..., xl, yq, ..., yl−2r−1, zr, ..., zl] such that

g(l)
pqr = yl−2rz2

r + h(l).

On the other hand, if l < 2p, then we have l < 2p = q + 2r < 2q + r. Hence by Lemma 2.14(a), g(l)
pqr = 0

and (S m ∩ V(Lpqr)) ∩ D(zr) is defined by

(Lpqr + ⟨g(0), ..., g(m)⟩) · (Rm)zr =Lpqr · (Rm)zr +

〈
y2p−2r +

h(2p)

z2
r
, y2p+1−2r +

h(2p+1)

z2
r

, ..., ym−2r +
h(m)

z2
r

〉
(1)

in D(zr) ⊂ (A3)m. This ideal is prime of height p+q+ r+ (m−2p+1) = m− p+q+ r+1 = m+ p− r+1.
Therefore, (S m ∩ V(Lpqr)) ∩ D(zr) is irreducible of codimension m + p − r + 1.

(b) Using the automorphism φ1, we see that (b) follows from (a).

(c) First, we note that yq = zq holds on S m ∩ V(Lpqq + ⟨yq + zq⟩), so

γ ∈ (S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(yq)⇔ γ ∈ (S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(zq).

Hence we have

(S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(yq) = (S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(zq).

Next, we prove that the closed subset (S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(yq) is irreducible of codimension
m+p−q+1. It is enough to show that (Lpqq+⟨yq+zq⟩+⟨g(0), ..., g(m)⟩)·(Rm)yq is prime of height m+p−q+1.
Let us look at g(l)

pqq for l with l ≤ m. If l < 3q, then l < 3q < 2p. So g(l)
pqq = 0 by Lemma 2.14(a). If l = 3q,

then g(3q)
pqq = y2

qzq + yqz2
q by Lemma 2.14(d), and g(3q)

pqq ∈ ⟨yq + zq⟩. Finally, if 3q < l ≤ m, Tz(g
(l)
pqq) = y2

qzl−2q

by Lemma 2.14(h). So there exists a polynomial h(l) ∈ k[xp, ..., xm, yq, ..., ym, zq, ..., zl−2q−1] such that

g(l)
pqq = y2

qzl−2q + h(l).

Therefore, (S m ∩ V(Lpqq + ⟨yq + zq⟩)) ∩ D(yq) is defined by

(Lpqq + ⟨yq + zq⟩ + ⟨g(0), ..., g(m)⟩) · (Rm)yq

=(Lpqq + ⟨yq + zq⟩) · (Rm)yq +

〈
zq+1 +

h(3q+1)

y2
q

, zq+2 +
h(3q+2)

y2
q

, ..., zm−2q +
h(m)

y2
q

〉
and this ideal is prime of height p + q + q + 1 + (m − 3q) = m + p − q + 1.

(d) First, we prove the following claim.

Claim 4.5. (S m ∩ V(Lpqq)) ∩ D(yq) is irreducible of codimension m + p − q + 1.

We think of the defining ideal Lpqq + ⟨g(0), ..., g(m)⟩ of S m ∩ V(Lpqq) as

Lpqq + ⟨g(0), ..., g(2p)⟩ + ⟨g(2p+1), ..., g(m)⟩.

By Lemma 2.14(a) and Lemma 2.14(c),

Lpqq + ⟨g(0), ..., g(2p)⟩ = Lpqq + ⟨g
(2p)
pqq ⟩,

with g(2p)
pqq = x2

p + y2
qzq + yqz2

q and by Notation 2.5,

{g(2p+1)
pqq , ..., g(m)

pqq} ⊂ k[xp, ..., xm, yq, ..., ym, zq, ..., zm].
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Now, we consider the following residue ring:

Q = k[x0, ..., xp, y0, ..., yq, z0, ..., zq]/⟨x0, ..., xp−1, y0, ..., yq−1, z0, ..., zq−1, g
(2p)
pqq ⟩

� k[xp, yq, zq]/⟨g(2p)
pqq ⟩.

Since g(2p)
pqq is irreducible in k[xp, yq, zq] by Remark 2.15, this ring is an integral domain. Since

Qm := Q[xp+1, ..., xm, yq+1, ..., ym, zq+1, ..., zm]

� Rm/(⟨x0, ..., xp−1, y0, ..., yq−1, z0, ..., zq−1, g
(2p)
pqq ⟩),

Lpqq + ⟨g
(2p)
pqq ⟩ is prime of height p + q + q + 1 = 3p − q + 1 and the claim holds if m = 2p. Moreover, we

have yq < ⟨g
(2p)
pqq ⟩ and Lpqq + ⟨g

(2p)
pqq ⟩ is prime, so (S m ∩ V(Lpqq)) ∩ D(yq) = S m ∩ V(Lpqq).

In the following, we assume m > 2p. Let g(2p+1)
pqq , ..., g(m)

pqq and yq be the images of g(2p+1)
pqq , ..., g(m)

pqq

and yq by the natural surjection Rm → Qm. What we have to show is that ⟨g(2p+1)
pqq , ..., g(m)

pqq⟩ · (Qm)yq

is prime of height m − 2p. Here, we note that yq , 0 in Qm since yq < ⟨g
(2p)
pqq ⟩ and that Qyq is also

an integral domain. Assume 2p + 1 ≤ l ≤ m. Then we have l ≥ 2p + 1 > 2p = 3q. Hence there
exists h(l) ∈ Q[xp+1, ..., xl, yq+1, ..., yl, zq+1, ..., zl−2q−1] such that g(l)

pqq = yq
2zl−2q + h(l) by Lemma 2.14(h).

Therefore, from

⟨g(2p+1)
pqq , ..., g(m)

pqq⟩ · (Qm)yq =

〈
z2p−2q+1 +

h(2p+1)

yq
2 , z2p−2q+2 +

h(2p+2)

yq
2 , ..., zm−2q +

h(m)

yq
2

〉
,

it follows that ⟨g(2p+1)
pqq , ..., g(m)

pqq⟩ · (Qm)yq is prime of height m − 2p in
(Qm)yq � Qyq [xp+1, ..., xm, yq+1, ..., ym, zq+1, ..., zm].

This proves the claim.
Finally, we prove

(S m ∩ V(Lpqq)) ∩ D(yq) = (S m ∩ V(Lpqq)) ∩ D(zq).

Note that the right-hand side is also irreducible by the symmetry. From g(0, tq, tq) = 0, it follows that
(0, tq, tq) ∈ (S m ∩V(Lpqq)) ∩D(yqzq). Since an irreducible closed set is the closure of its nonempty open
subset, we have

(S m ∩ V(Lpqq)) ∩ D(yq) = (S m ∩ V(Lpqq)) ∩ D(yqzq) = (S m ∩ V(Lpqq)) ∩ D(zq).

□

Corollary 4.6. For m ≥ 3, the ideals J1
m ·(Rm)z1 , J2

m ·(Rm)y1 and J3
m ·(Rm)y1 are prime, and the closed subsets

V(J1
m) ∩ D(z1), V(J2

m) ∩ D(y1) and V(J3
m) ∩ D(y1) are irreducible of dimension 2m+ 1 (or equivalently of

codimension m + 2 in (A3)m).

Proof. For m = 3, it is easy to see that J1
3 , J2

3 and J3
3 are prime of height 5. For instance, by Lemma

2.14(a), f (0)
221 = f (1)

221 = f (2)
221 = f (3)

221 = 0. Hence J1
3 = L221 is prime of height 5. Similarly for J2

3 and J3
3 .

For m ≥ 4, we apply Lemma 4.4(a) with p = q = 2 and r = 1 to show that V(J1
m) ∩ D(z1) is irreducible

of codimension

m + 2 − 1 + 1 = m + 2.

We see that J1
m · (Rm)z1 is prime from (1) in the proof of Lemma 4.4(a).

Using Lemma 4.3(b), we also see that J2
m · (Rm)y1 and J3

m · (Rm)y1 are prime and V(J2
m) ∩ D(y1) and

V(J3
m) ∩ D(y1) are irreducible of codimension m + 2. □

Now we define ideals in Rm that will turn out to be defining ideals of the irreducible components of
S 0

m for m ≥ 5.
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Definition 4.7. For m ≥ 1, we define

I0
m = L222 + ⟨g(0), ..., g(m)⟩,

I1
m = J1

m · (Rm)z1 ∩ Rm,

I2
m = J2

m · (Rm)y1 ∩ Rm,

I3
m = J3

m · (Rm)y1 ∩ Rm.

Furthermore, we define closed subsets
Zi

m = V(Ii
m)

for 0 ≤ i ≤ 3.

Remark 4.8. By Lemma 2.14(b), we have f (4)
222 = x2

2. Hence, if m ≥ 4,
Z0

m = V(L322 + ⟨g(0), ..., g(m)⟩) = S m ∩ V(L322).
Assume 2p = 3q and m ≥ 2p. By Remark 2.6 and Lemma 2.14(a),

Lpqq + ⟨g(0), ..., g(m)⟩ = Lpqq + ⟨g(0)
pqq, ..., g

(m)
pqq⟩ = Lpqq + ⟨g

(2p)
pqq , ..., g(m)

pqq⟩.

The same arguments show that

Lpqq + ⟨g(0), ..., g(2p−1)⟩ = Lpqq.

Lemma 4.9. For m ≥ 5, Z0
m is irreducible of dimension 2m + 1 (or equivalently of codimension m + 2 in

(A3)m).

The strategy of the proof of this lemma is as follows: Let u = ⌊m/6⌋. We decompose Z0
m into

Z0
m ∩
(
V(L3,u′,u′ ) ∩

(
D(yu′ ) ∪ D(zu′ )

))
for u′ < 2u and Z0

m ∩ V(L3,2u,2u) and calculate their codimensions.
The codimensions of the former are calculated in the same way as in Lemma 4.4. As for the latter, we
calculate these sets in Proposition 4.10. On the other hand, we have an upper bound for the codimension
of the irreducible components of Z0

m. Then we can argue as in [6] to conclude that Z0
m is irreducible.

Before proving Lemma 4.9, we show the following proposition.

Proposition 4.10. Let p, q and u be positive integers with p = 3u and q = 2u, and assume
2p ≤ m < 2(p + 3). We set

Um := V(Lpqq + ⟨g
(2p)
pqq , ..., g(m)

pqq⟩) = S m ∩ V(Lpqq),

Vm := V(Lp,q+1,q+1 + ⟨g
(2p)
p,q+1,q+1, ..., g

(m)
p,q+1,q+1⟩) = S m ∩ V(Lp,q+1,q+1),

Wm := V(Lp+2,q+2,q+2 + ⟨g
(2p)
p+2,q+2,q+2, ..., g

(m)
p+2,q+2,q+2⟩) = S m ∩ V(Lp+2,q+2,q+2).

(a) The codimension of the closed subset Wm in (A3)m is greater than m + u + 1.
(b) The codimension of the closed subset Vm in (A3)m is greater than m + u + 1.
(c) Um is irreducible of codimension m + u + 1 in (A3)m, and

Um = (S m ∩ V(Lpqq)) ∩ D(yq) = (S m ∩ V(Lpqq)) ∩ D(zq).

Proof. We fix u (and p, q), and deal with the cases m = 2p, 2p + 1, ..., 2p + 5 in order.

(a) The cases m ≤ 2p + 3. By Lemma 2.14(a), we have

g(2p)
p+2,q+2,q+2 = · · · = g(2p+3)

p+2,q+2,q+2 = 0.

Hence

Lp+2,q+2,q+2 + ⟨g
(2p)
p+2,q+2,q+2, ..., g

(m)
p+2,q+2,q+2⟩ = Lp+2,q+2,q+2

and

codim(A3)m Wm = p + 2 + q + 2 + q + 2 = 7u + 6 > 7u + 4 ≥ m + u + 1.
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The case m = 2p + 4. By Lemma 2.14(b), g(2p+4)
p+2,q+2,q+2 = x2

p+2. Hence

W2p+4 = V(Lp+2,q+2,q+2 + ⟨x2
p+2⟩) = V(Lp+3,q+2,q+2).

Thus, W2p+4 is irreducible of codimension

p + 3 + q + 2 + q + 2 = 7u + 7 > 7u + 5 = (2p + 4) + u + 1

in (A3)m.
The case m = 2p + 5. We note that

W2p+5 = (πS
2p+5,2p+4)−1(W2p+4) = V(Lp+3,q+2,q+2 + ⟨g

(2p+5)
p+3,q+2,q+2⟩).

By Lemma 2.14(a), g(2p+5)
p+3,q+2,q+2 = 0. Hence W2p+5 is irreducible of codimension

p + 3 + q + 2 + q + 2 = 7u + 7 > 7u + 6 = (2p + 5) + u + 1

in (A3)m. This completes the proof of (a).

(b) The case m = 2p. By Lemma 2.14(b), g(2p)
p,q+1,q+1 = x2

p. Hence

V2p = V(Lp,q+1,q+1 + ⟨x2
p⟩) = V(Lp+1,q+1,q+1)

and V2p is of codimension p + 1 + q + 1 + q + 1 = 7u + 3 > 7u + 1 = 2p + u + 1.
We note that, for m ≥ 2p + 1,

Vm = (πS
m,2p)−1(V2p) = V(Lp+1,q+1,q+1 + ⟨g

(2p+1)
p+1,q+1,q+1, ..., g

(m)
p+1,q+1,q+1⟩).

The case m = 2p + 1. By Lemma 2.14(a), g(2p+1)
p+1,q+1,q+1 = 0 and V2p+1 is of codimension

p + 1 + q + 1 + q + 1 = 7u + 3 > 7u + 2 = (2p + 1) + u + 1.

The case m = 2p + 2. By Lemma 2.14(b), g(2p+2)
p+1,q+1,q+1 = x2

p+1. Hence

V2p+2 = V(Lp+1,q+1,q+1 + ⟨x2
p+1⟩) = V(Lp+2,q+1,q+1)

and V2p+2 is of codimension p + 2 + q + 1 + q + 1 = 7u + 4 > 7u + 3 = (2p + 2) + u + 1.
The case m = 2p + 3. By Lemma 2.14(d), g(2p+3)

p+2,q+1,q+1 = yq+1zq+1(yq+1 + zq+1). Hence

V2p+3 = V(Lp+2,q+1,q+1 + ⟨yq+1zq+1(yq+1 + zq+1)⟩)
= V(Lp+2,q+2,q+1) ∪ V(Lp+2,q+1,q+2) ∪ V(Lp+2,q+1,q+1 + ⟨yq+1 + zq+1⟩).

Thus

codim(A3)m V2p+3 = 7u + 5 > 7u + 4 = (2p + 3) + u + 1.

The cases m ≥ 2p + 4. Since
Vm = (πS

m,2p+3)−1(V2p+3) =

(S m ∩ V(Lp+2,q+2,q+1)) ∪ (S m ∩ V(Lp+2,q+1,q+2)) ∪ (S m ∩ V(Lp+2,q+1,q+1 + ⟨yq+1 + zq+1⟩))

and (A3)m = D(yq+1) ∪ D(zq+1) ∪ V(yq+1, zq+1), we have

Vm = (S m ∩ V(Lp+2,q+2,q+1)) ∩ D(zq+1) ∪ (S m ∩ V(Lp+2,q+1,q+2)) ∩ D(yq+1) ∪

(S m ∩ V(Lp+2,q+1,q+1 + ⟨yq+1 + zq+1⟩)) ∩ D(yq+1) ∪

(S m ∩ V(Lp+2,q+1,q+1 + ⟨yq+1 + zq+1⟩)) ∩ D(zq+1) ∪ (Vm ∩ V(yq+1, zq+1)).

Note that Vm ∩ V(yq+1, zq+1) = Wm. By Lemma 4.4(a), (b) and (c) and the statement (a) above,

codim(A3)m Vm > m + u + 1.
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This complete the proof of (b).
(c) Since (A3)m = D(yq) ∪ D(zq) ∪ V(yq, zq) and Um is closed, we have

Um = Um ∩ (A3)m = Um ∩ D(yq) ∪ Um ∩ D(zq) ∪ (Um ∩ V(yq, zq)).

By Lemma 4.4(d), we have

Um ∩ D(yq) = Um ∩ D(zq)

and Um ∩ D(yq) is irreducible of codimension

m + p − q + 1 = m + u + 1

in (A3)m. Moreover, we have Um ∩ V(yq, zq) = Vm. By the assertion (b), we have

codim(A3)m Vm > m + u + 1.

We note that Um is defined by the ideal Lpqq + ⟨g
(2p)
pqq , ..., g

(m)
pqq⟩, which is generated by

p + q + q + (m − 2p + 1) = m + u + 1

elements. Thus, by Krull’s height theorem, Vm contains no irreducible component of Um. Hence

Um = Um ∩ D(yq)

is irreducible of

codim(A3)m Um = m + u + 1.

This complete the proof of (c) and the proof of the proposition. □

Proof of Lemma 4.9. First, we consider the case m = 5. Then we have
Z0

m = V(L322)

by Remark 4.8, and this closed subset is irreducible of codimension 3 + 2 + 2 = 7 = m + 2.
Next, we prove the statement for m ≥ 6. Let u be the positive integer with 6u ≤ m < 6(u + 1). If

u = 1, then by Remark 4.8 and Proposition 4.10, Z0
m = V(L322 + ⟨g(0), ..., g(m)⟩) = Um is irreducible of

codimension m + u + 1 = m + 2. Hence this case was proven. In the following, we assume u ≥ 2. We
note that V(L322) is equal to

2u−1⋃
u′=2

(
V(L3,u′,u′ ) ∩

(
D(yu′ ) ∪ D(zu′ )

))
∪ V(L3,2u,2u).

Since Z0
m can be written as Z0

m ∩ V(L322) by Remark 4.8, it is the union of the following sets:
(α) Yu′ := Z0

m ∩
(
V(L3,u′,u′ ) ∩

(
D(yu′ ) ∪ D(zu′ )

))
(u′ = 2, 3, ..., 2u − 1),

(β) Y2u := Z0
m ∩ V(L3,2u,2u).

Now, we will see the following claim.

Claim 4.11. (a) Y2 is irreducible of codimension m + 2 in (A3)m.
(b) For u′ = 3, 4, ..., 2u, Yu′ is of codimension greater than m + 2 in (A3)m.

Note that L322 + ⟨g(0), ..., g(m)⟩ = L322 + ⟨g
(6)
322, ..., g

(m)
322⟩ by Remark 2.6 and by Remark 4.8. This ideal

is generated by 3 + 2 + 2 + (m − 5) = m + 2 elements, so we see that any irreducible component of
Z0

m = V(I0
m) is of codimension at most m + 2 in (A3)m. Thus if we can prove the above claim, then the

proof is complete.
Before proving the claim, we give another set of defining equations of Z0

m∩V(L3,u′,u′ ) for u′ = 2, 3, ..., 2u.
Note that

Z0
m ∩ V(L3,u′,u′ ) = V(L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩)
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by Remark 4.8. Let us show that√
L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩ =

√
L⌈3u′/2⌉,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩(2)

=

√
L⌈3u′/2⌉,u′,u′ + ⟨g

(6)
⌈3u′/2⌉,u′,u′ , ..., g

(m)
⌈3u′/2⌉,u′,u′⟩.

For the case u′ = 2, then ⌈3u′/2⌉ = 3 and hence the assertion holds.
For the cases u′ ≥ 3, it is suffices to show that

xl/2 ∈

√
L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩

for l = 6, 8, ..., 2(⌈3u′/2⌉ − 1). We prove this by induction. If l = 6, then l = 6 < 9 ≤ 3u′ (≤ m) and hence
g(6)

3,u′,u′ = x2
3 by Lemma 2.14(b), and hence

x3 ∈

√
L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩.

For l ≥ 8, we assume that

xl′/2 ∈

√
L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩

holds for even integers l′ < l. Then we have√
L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩ =

√
Ll/2,u′,u′ + ⟨g

(6)
l/2,u′,u′ , ..., g

(m)
l/2,u′,u′⟩.

Since l/2 < ⌈3u′/2⌉ < 2u′ for u′ > 0, we have

l ≤ 2(⌈3u′/2⌉ − 1) ≤ 2((3u′ + 1)/2 − 1) = 3u′ + 1 − 2 = 3u′ − 1 < 3u′ (≤ m).

Hence we have

g(l)
l/2,u′,u′ = x2

l/2

and

xl/2 ∈

√
Ll/2,u′,u′ + ⟨g

(6)
l/2,u′,u′ , ..., g

(m)
l/2,u′,u′⟩.

Therefore, we have

xl/2 ∈

√
L3,u′,u′ + ⟨g

(6)
3,u′,u′ , ..., g

(m)
3,u′,u′⟩

for l = 6, 8, ..., 2(⌈3u′/2⌉ − 1) and (2) holds.
Now, we prove the statements (a) and (b) of the claim with u′ , 2u. If u′ is even, then, for u′′ = u′/2,

we have

Z0
m ∩ V(L3,u′,u′ ) ∩ D(yu′ ) = V(L3u′′,2u′′,2u′′ + ⟨g

(6)
3u′′,2u′′,2u′′ , ..., g

(m)
3u′′,2u′′,2u′′⟩) ∩ D(y2u′′ ),

Z0
m ∩ V(L3,u′,u′ ) ∩ D(zu′ ) = V(L3u′′,2u′′,2u′′ + ⟨g

(6)
3u′′,2u′′,2u′′ , ..., g

(m)
3u′′,2u′′,2u′′⟩) ∩ D(z2u′′ )

by (2) and these sets coincide and are irreducible of codimension m − 3u′′ + 2(2u′′) + 1 = m + u′′ + 1
by Lemma 4.4(d) with p = 3u′′ and q = r = 2u′′. Hence, if u′ = 2, i.e., u′′ = 1, then this set is of
codimension m + 2. If u′ ≥ 4 i.e., u′′ ≥ 2, then this set is of codimension m + u′′ + 1 > m + 2. Thus, the
case in which u′ is even is complete.

Next, if u′ is odd, then we have

Z0
m ∩ V(L3,u′,u′ ) = V(L 3u′+1

2 ,u′,u′ + ⟨g
(6)
3u′+1

2 ,u′,u′
, ..., g(m)

3u′+1
2 ,u′,u′

⟩).
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by (2). By Lemma 2.14(a) and (d) with p = (3u′ + 1)/2, q = u′ and r = u′, we have g(l)
3u′+1

2 ,u′,u′
= 0 for

l < 3u′ and g(3u′)
3u′+1

2 ,u′,u′
= yu′zu′ (yu′ + zu′ ). Thus

Z0
m ∩ V(L3,u′,u′ ) =

⋃
i=1,2,3

(
V(L 3u′+1

2 ,u′,u′ + ⟨hu′,i⟩ + ⟨g
(3u′+1)
3u′+1

2 ,u′,u′
, ..., g(m)

3u′+1
2 ,u′,u′

⟩)
)

where hu′,1 = yu′ , hu′,2 = zu′ and hu′,3 = yu′ + zu′ . Therefore,

Z0
m ∩ V(L3,u′,u′ ) ∩ D(yu′ )

=
⋃
i=2,3

V(L 3u′+1
2 ,u′,u′ + ⟨hu′,i⟩ + ⟨g

(3u′+1)
3u′+1

2 ,u′,u′
, ..., g(m)

3u′+1
2 ,u′,u′

⟩) ∩ D(yu′ )

and both summands are irreducible of codimension m + p − q + 1 > m + 2 by Lemma 4.4(b) with
p = (3u′ + 1)/2, q = u′ and r = u′ + 1 and Lemma 4.4(c) with p = (3u′ + 1)/2 and q = r = u′. By the
symmetry, we have the same conclusion for

Z0
m ∩ V(L3,u′,u′ ) ∩ D(zu′ ).

Hence, for 2 < u′ ≤ 2u − 1, Yu′ is of codimension greater than m + 2. Thus, the case in which u′ is odd is
complete.

Finally, we prove (b) with u′ = 2u. By (2),

Y2u = Z0
m ∩ V(L3,2u,2u) = V(L3u,2u,2u + ⟨g

(6)
3u,2u,2u, ..., g

(m)
3u,2u,2u⟩).

Then this closed subset is irreducible of codimension m + u + 1 by Proposition 4.10. Furthermore, we
have u > 1 by assumption. Hence Y2u is of codimension m + u + 1 > m + 2. □

We remark on the symmetries of the irreducible components of the singular fiber.

Lemma 4.12. Assume m ≥ 3. The closed subsets Z0
m,Z

1
m,Z

2
m and Z3

m are mapped to another by ψ1 and
ψ2 (see Notation 4.2) as follows:

(a) ψ1(Z0
m) = Z0

m, ψ1(Z1
m) = Z2

m, ψ1(Z2
m) = Z1

m and ψ1(Z3
m) = Z3

m.
(b) ψ2(Z0

m) = Z0
m, ψ2(Z1

m) = Z1
m, ψ2(Z2

m) = Z3
m and ψ2(Z3

m) = Z2
m.

By Lemma 4.3, we can prove this lemma in the same way as Lemma 3.8.

Proposition 4.13. For m ≥ 3, we have

S 0
m = Z0

m ∪ Z1
m ∪ Z2

m ∪ Z3
m.

Moreover, Z1
m, Z2

m and Z3
m are pairwise distinct.

By Remark 2.15, the assertions in Lemma 2.14 (a) – (h) are the same as f and g. Hence the proof of
this proposition is the same as that of Proposition 3.9.

Now, we give the irreducible decomposition of the singular fiber S 0
m. The following proposition gives

the irreducible decomposition for small m.

Proposition 4.14. For 0 ≤ m ≤ 4, the irreducible decomposition of the singular fiber S 0
m is as follows.

(a) S 0
0 = V(L111),

(b) S 0
1 = V(L111),

(c) S 0
2 = V(L211),

(d) S 0
3 = Z1

3 ∪ Z2
3 ∪ Z3

3 ,
(e) S 0

4 = Z1
4 ∪ Z2

4 ∪ Z3
4 ,

where Zi
m’s are as in Definition 4.7. Moreover, for 1 ≤ m ≤ 4, the codimension of any irreducible

component Z ⊆ S 0
m is

codim(A3)m Z = m + 2.
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This proposition can be proved in the same way as Proposition 3.10.

Theorem 4.15. For m ≥ 5, the irreducible decomposition of the singular fiber S 0
m is

S 0
m = Z0

m ∪ Z1
m ∪ Z2

m ∪ Z3
m,

where Zi
m’s are as in Definition 4.7.

Proof. By Proposition 4.13,

S 0
m =Z0

m ∪ Z1
m ∪ Z2

m ∪ Z3
m.

Moreover, by Corollary 4.6 and Lemma 4.9, Z0
m, Z1

m, Z2
m and Z3

m are irreducible of codimensions m + 2 in
(A3)m. Hence we only have to show that Zi

m, for 0 ≤ i ≤ 3, are pairwise distinct.
For m ≥ 5, we have Z0

m ∩ (D(y1) ∪ D(z1)) = ∅ while Zi
m ∩ (D(y1) ∪ D(z1)) , ∅ for 1 ≤ i ≤ 3, so Z0

m is
different from Z1

m, Z2
m and Z3

m. Moreover, by Proposition 4.13 Z1
m, Z2

m and Z3
m are pairwise distinct. This

complete the proof. □

To conclude this paper, we prove the following theorem on the jet schemes of D1
4-singularities, which

is analogous to Theorem 3.15 and the characteristic 0 case [5, Theorem 3.17].

Theorem 4.16. Let k be an algebraically closed field of characteristic 2, S ⊂ A3 the surface defined by
g = x2 + y2z + yz2 + xyz in the affine space over k, S 0

m the singular fiber of the m-th jet scheme S m with
m ≥ 5 and Z0

m, ...,Z
3
m its irreducible components as in Definition 4.7.

(a) For 0 ≤ i < j ≤ 3, Zi
m ∩ Z j

m ⊊ Z0
m.

(b) For 1 ≤ i, j ≤ 3 with i , j, Z0
m ∩ Zi

m ⊈ Z0
m ∩ Z j

m.
(c) For 1 ≤ i, j ≤ 3 with i , j, Zi

m ∩ Z j
m ⊊ Z0

m ∩ Zi
m.

(d) For 1 ≤ i < j ≤ 3 and 1 ≤ l ≤ 3, Z0
m ∩ Zl

m ⊈ Zi
m ∩ Z j

m.

In particular, for 0 ≤ i < j ≤ 3, Zi
m ∩ Z j

m is maximal in {Zi
m ∩ Z j

m | i, j ∈ {0, 1, 2, 3}, i , j} with respect to
the inclusion relation if and only if (i, j) = (0, 1), (0, 2), (0, 3).

Proof. We argue as in the proof of Theorem 3.15.
(a) Note that

g(4) ≡ f (4)

modulo L221 or L212 for f = x2 + y2z + yz2 since terms from x2y2z1 or x2y1z2 are of degree at least 5,
where xi, yi, zi are as in Notation 2.5. Hence we can prove Zi

m ∩ Z j
m ⊊ Z0

m as in the proof of Theorem 3.15.

(b) By Lemma 4.12, it suffices to show that
( i ) (0, t2, t2) ∈ Z0

m ∩ Z3
m.

(ii) (0, t2, t2) < Z0
m ∩ Z1

m.
Let P = (0, t2, t2). We have g(P) = 02 + (t2)2 · t2 + t2 · (t2)2 + 0 · t2 · t2 = 2t6 = 0, hence we have P ∈ S m.

( i ) Let us prove P ∈ Z0
m ∩ Z3

m. We note that P corresponds to xα = yβ = zβ = 0 for α ∈ {0, ...,m} and
β ∈ {0, 1, 3, ...,m} and y2 = z2 = 1. Thus we have P ∈ Z0

m = S m ∩V(L222). We put Ps = (0, st + t2, st + t2)
for s ∈ k. If s , 0, then we have g(Ps) = 0 and Ps corresponds to xα = yβ = zβ = 0 for α ∈ {0, ...,m} and
β ∈ {0, 3, ...,m}, y1 = z1 = s , 0 and y2 = z2 = 1. Hence we have Ps ∈ V(L211+⟨y1+z1⟩)∩D(y1) for s , 0.
Taking the Zariski closure of V(L211+ ⟨y1+ z1⟩)∩D(y1), we have P = P0 ∈ V(L211 + ⟨y1 + z1⟩) ∩ D(y1) =
Z3

m. Therefore, we have P ∈ Z0
m ∩ Z3

m.
(ii) We prove P < Z0

m ∩ Z1
m. We have

g(5)
221 = y2

2z1 + y3z2
1 + x2y2z1 = z1(y2

2 + y3z1 + x2y2),
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hence we have y2
2 + y3z1 + x2y2 ∈ J1

m · (Rm)z1 ∩ Rm = I1
m. Since x2, z1 ∈ L322 ⊆

√
I0
m (see Remark 4.8), we

have y2 ∈

√
I0
m + I1

m. Therefore we have P < Z0
m ∩ Z1

m.

(c), (d) The assertions are proven in the same way as in the proof of Theorem 3.15(c) and (d). □

Corollary 4.17. For m ≥ 5, the graph Γ(S 0
m) obtained by Construction 3.17 is the resolution graph of a

D4-type singularity.
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